"Right Hemispheric White Matter Hyperintensities Improve the Prediction" by Lisa Rohrig, Christoph Sperber et al. https://doi.org/10.1016/j.nicl.2022.103265

">
 

Document Type

Article

Abstract

White matter hyperintensities (WMH) are frequently observed in brain scans of elderly people. They are asso-ciated with an increased risk of stroke, cognitive decline, and dementia. However, it is unknown yet if measures of WMH provide information that improve the understanding of poststroke outcome compared to only state-of-the-art stereotaxic structural lesion data.We implemented high-dimensional machine learning models, based on support vector regression, to predict the severity of spatial neglect in 103 acute right hemispheric stroke patients.We found that (1) the additional information of right hemispheric or bilateral voxel-based topographic WMH extent indeed yielded a significant improvement in predicting acute neglect severity (compared to the voxel-based stroke lesion map alone). (2) Periventricular WMH appeared more relevant for prediction than deep subcortical WMH. (3) Among different measures of WMH, voxel-based maps as measures of topographic extent allowed more accurate predictions compared to the use of traditional ordinally assessed visual rating scales (Fazekas-scale, Cardiovascular Health Study-scale).In summary, topographic WMH appear to be a valuable clinical imaging biomarker for predicting the severity of cognitive deficits and bears great potential for rehabilitation guidance of acute stroke patients.

Digital Object Identifier (DOI)

https://doi.org/10.1016/j.nicl.2022.103265

Rights

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

APA Citation

Röhrig, L., Sperber, C., Bonilha, L., Rorden, C., & Karnath, H.-O. (2022). Right hemispheric white matter hyperintensities improve the prediction of spatial neglect severity in acute stroke. NeuroImage: Clinical, 36, 103265. https://doi.org/10.1016/j.nicl.2022.103265

Included in

Psychology Commons

Share

COinS