Document Type

Article

Abstract

The single-particle model presented by Santhanagopalan et al. [ J. Power Sources , 156 , 620 (2006)] is extended to include an energy balance. The temperature dependence of the solid phase diffusion coefficient of the lithium in the intercalation particles, the electrochemical reaction rate constants, and the open circuit potentials (OCPs) of the positive and negative electrodes are included in the model. The solution phase polarization is approximated using a nonlinear resistance, which is a function of current and temperature. The model is used to predict the temperature and voltage profiles in a lithium-ion cell during galvanostatic operations. The single-particle thermal model is validated by comparing the simulated voltage and temperature profiles to the results obtained using a distributed porous electrode model. The simulation results from the single-particle thermal model also show good agreement with experimental voltage data obtained from lithium-ion pouch cells under different discharge rates (C/33, C/2 and C) at different temperatures (15, 25, 35, and 45°C ).

Rights

© The Electrochemical Society, Inc. 2011. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in

Guo, M., Sikha, G., & White, R. E. (2011). Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior. Journal of The Electrochemical Society, 158 (2), A122 – A132.

Publisher’s Version: http://dx.doi.org/10.1149/1.3521314

Share

COinS