https://doi.org/10.3390/gels5020030">
 

ORCID iD

0000-0001-6548-5422

Document Type

Article

Abstract

Protein-based biopolymers derived from natural tissues possess a hierarchical structure in their native state. Strongly solvating, reducing and stabilizing agents, as well as heat, pressure, and enzymes are used to isolate protein-based biopolymers from their natural tissue, solubilize them in aqueous solution and convert them into injectable or preformed hydrogels for applications in tissue engineering and regenerative medicine. This review aims to highlight the need to investigate the nano-/micro-structure of hydrogels derived from the extracellular matrix proteins of natural tissues. Future work should focus on identifying the nature of secondary, tertiary, and higher order structure formation in protein-based hydrogels derived from natural tissues, quantifying their composition, and characterizing their binding pockets with cell surface receptors. These advances promise to lead to wide-spread use of protein-based hydrogels derived from natural tissues as injectable or preformed matrices for cell delivery in tissue engineering and regenerative medicine.

Digital Object Identifier (DOI)

https://doi.org/10.3390/gels5020030

Rights

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

APA Citation

Jabbari, E. (2019). Challenges for Natural Hydrogels in Tissue Engineering. Gels, 5(2), 30.

Share

COinS