Modeling Volume Change due to Intercalation into Porous Electrodes
Document Type
Article
Subject Area(s)
Electro-chemical Engineering
Abstract
A mathematical model is presented that predicts the dimensional and porosity changes in a porous electrode caused by volume changes in the active material during intercalation (e.g., lithium into carbon or silicon). Porosity and dimensional changes in an electrode significantly affect the resistance of the battery during cycling. In addition, volume changes generate stresses in the electrode, which can lead to premature failure of the battery. Here, material conservation equations are coupled with the mechanical properties of the porous electrode to derive governing relations that link dimensional and porosity changes to stresses that occur during the intercalation process. The stress-strain relationships used in this model, which are needed to predict porosity and dimensional changes, have been established by examining the similarities between thermal rock expansion (e.g., the exchange of thermal energy with the rock) and electrode expansion due to intercalation.
Publication Info
Postprint version. Published in Journal of The Electrochemical Society, Volume 161, Issue 8, 2014, pages 3297-3301.
Rights
© Journal of The Electrochemical Society, 2014, Electrochemical Society
Garrick, T.R., Kanneganti, K., Huang, X., Weidner, J.W (2014). Modeling Volume Change due to Intercalation into Porous Electrodes. Journal of The Electrochemical Society, 161(8), 3297-3301.
http://dx.doi.org/10.1149/2.030408jes