"Semiclassical Nonadiabatic Dynamics Based on Quantum Trajectories for " by Sophya V. Garashchuk, V. A. Rassolov et al.
 

Semiclassical Nonadiabatic Dynamics Based on Quantum Trajectories for the O(3P,1D) + H2 System

Sophya V. Garashchuk, University of South Carolina - Columbia
V. A. Rassolov
G. C. Schatz

Abstract

The O(P3,D1)+H2→OH+Hreaction is studied using trajectory dynamics within the approximate quantum potential approach. Calculations of the wave-packet reaction probabilities are performed for four coupled electronic states for total angular momentum J=0 using a mixed coordinate/polar representation of the wave function. Semiclassical dynamics is based on a single set of trajectories evolving on an effective potential-energy surface and in the presence of the approximate quantum potential. Population functions associated with each trajectory are computed for each electronic state. The effective surface is a linear combination of the electronic states with the contributions of individual components defined by their time-dependent average populations. The wave-packet reaction probabilities are in good agreement with the quantum-mechanical results. Intersystem crossing is found to have negligible effect on reaction probabilities summed over final electronic states.