Faculty Publications

Document Type

Article

Abstract

We report the U-Pb age distribution of detrital zircons collected from central and southern Appalachian foreland basin strata, which record changes of sediment provenance in response to the different phases of the Appalachian orogeny. Taconic clastic wedges have predominantly ca. 1080–1180 and ca. 1300–1500 Ma zircons, whereas Acadian clastic wedges contain abundant Paleozoic zircons and minor populations of 550–700 and 1900–2200 Ma zircons consistent with a Gondwanan affinity. Alleghanian clastic wedges contain large populations of ca. 980–1080 Ma and ca. 2700 Ma and older Archean zircons and fewer Paleozoic zircons than occur in the Acadian clastic wedges. The abundance of Paleozoic detrital zircons in Acadian clastic wedges indicates that the Acadian hinterland consisted of recycled material and Taconic-aged plutons, which provided significant detritus to the Acadian foreland basin. The appearance of Pan-African/Brasiliano- and Eburnean/Trans-Amazonian-aged zircons in Acadian clastic wedges suggests a Devonian accretion of the Carolina terrane. In contrast, the relative decrease in abundance of Paleozoic detrital zircons coupled with an increase of Archean and Grenville zircons in Alleghanian clastic wedges indicates the development of an orogenic hinterland consisting of deformed passive margin strata and Grenville basement. The younging-upward age progression in Grenville province sources revealed in Taconic through Alleghanian successions suggest a reverse unroofing sequence that indicates at least two cycles of Grenville zircon recycling.

Rights

Park, H., Barbeau Jr., D. L., Rickenbaker, A., Bachmann-Krug, D., & Gehrels, G. (2010). Application of foreland basin detrital-zircon geochronology to the reconstruction of the southern and central Appalachian Orogen. The Journal of Geology, 118 (1), 23-44.

© The Journal of Geology 2010, The University of Chicago Press

Share

COinS