Faculty Publications

Document Type

Article

Abstract

Cyclone Amphan was an exceptionally strong tropical cyclone in the Bay of Bengal that achieved a minimum central pressure of 907 mb during its active period in May 2020. In this study, we analyzed the oceanic and surface atmospheric conditions leading up to cyclogenesis, the impact of this storm on the Bay of Bengal, and how the processes that led to cyclogenesis, such as the Madden–Julian Oscillation (MJO) and Amphan itself, in turn impacted southwest monsoon preconditioning and onset. To accomplish this, we took a multiparameter approach using a combination of near real time satellite observations, ocean model forecasts, and reanalysis to better understand the processes involved. We found that the arrival of a second downwelling Kelvin wave in the equatorial Bay of Bengal, coupled with elevated upper ocean heat content and the positioning of the convective phase of the MJO, helped to create the conditions necessary for cyclogenesis, where the northward-propagating branch of the MJO acted as a trigger for cyclogenesis. This same MJO event, in conjunction with Amphan, heavily contributed atmospheric moisture to the southeastern Arabian Sea and established low-level westerlies that allowed for the southwest monsoon to climatologically onset on June 1.

Digital Object Identifier (DOI)

https://doi.org/10.3390/rs12183011

Rights

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

APA Citation

Roman-Stork, H., & Subrahmanyam, B. (2020). The Impact of the Madden–Julian Oscillation on Cyclone Amphan (2020) and Southwest Monsoon Onset. Remote Sensing, 12(18), 3011. https://doi.org/10.3390/rs12183011

Share

COinS