Date of Award
Spring 2020
Document Type
Open Access Dissertation
Department
Computer Science and Engineering
First Advisor
Jason D. Bakos
Abstract
Deterministic and Non-deterministic Finite Automata (DFA and NFA) comprise the fundamental unit of work for many emerging big data applications, motivating recent efforts to develop Domain-Specific Architectures (DSAs) to exploit fine-grain parallelism available in automata workloads.
This dissertation presents NAPOLY (Non-Deterministic Automata Processor Over- LaY), an overlay architecture and associated software that attempt to maximally exploit on-chip memory parallelism for NFA evaluation. In order to avoid an upper bound in NFA size that commonly affects prior efforts, NAPOLY is optimized for runtime reconfiguration, allowing for full reconfiguration in 10s of microseconds. NAPOLY is also parameterizable, allowing for offline generation of repertoire of overlay configurations with various trade-offs between state capacity and transition capacity.
In this dissertation, we evaluate NAPOLY on automata applications packaged in ANMLZoo benchmarks using our proposed state mapping heuristic and off-shelf SAT solver. We compare NAPOLY’s performance against existing CPU and GPU implementations. The results show NAPOLY performs best for larger benchmarks with more active states and high report frequency. NAPOLY outperforms in 10 out of 12 benchmark suite to the best of state-of-the-art CPU and GPU implementations. To the best of our knowledge, this is the first example of a runtime-reprogrammable FPGA-based automata processor overlay.
Rights
© 2020, Rasha Elham Karakchi
Recommended Citation
Karakchi, R. E.(2020). An Overlay Architecture for Pattern Matching. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/5943