"Investigation of Electrostatic Interactions Towards Controlling Silyla" by Tian Zhang

Author

Tian Zhang

Date of Award

Fall 2019

Document Type

Open Access Dissertation

Department

Chemistry and Biochemistry

First Advisor

Sheryl L. Wiskur

Abstract

This dissertation focuses on studies of silylation-based kinetic resolution methodology developed by the Wiskur group, which is a powerful method for the separation of a single enantiomer from a mixture of racemic secondary alcohols. Chapter 1 introduces the background of our silylation-based kinetic resolution..

Chapter 2 involves mechanistic studies of electrostatic interactions in controlling enantioselectivities of our silylation-based kinetic resolution. Electrostatic interactions between a silylated isothiourea intermediate and an ester π system is determined via linear free energy relationship study. To be specific, how variations in sterics and electronics affect the selectivity of a silylation-based kinetic resolution.

Chapter 3 is the following research of chapter 2 on the electrostatic interaction in controlling the enantioselectivities. Similar research approaches such as linear free energy relationship study is applied. Computation data on the proposed intermediate and transition state in silylation-based kinetic resolution our will be discussed.

Chapter 4 introduce an optimization of polystyrene-supported triphenylsilyl chlorides that were developed in our group in obtaining enantioenriched secondary alcohols via a chromatography-free isolation. Second generation’s polystyrene-supported triphenylsilyl chloride is proposed by incorporating polar methyl methacrylate to the adjacent position of active site, promoting a more polar microenvironment. Effect of variations in polarity and percentage of incorporating monomer will be discussed.

Rights

© 2019, Tian Zhang

Included in

Chemistry Commons

Share

COinS