Date of Award
2016
Document Type
Open Access Thesis
Department
Physics and Astronomy
Sub-Department
College of Arts and Sciences
First Advisor
Scott Crittenden
Abstract
The aim of this thesis is to provide a thorough description of the development of theory and experiment pertaining to the electrostatic double layer (EDL) in aqueous electrolytic systems. The EDL is an important physical element of many systems and its behavior has been of interest to scientists for many decades. Because many areas of science and engineering move to test, build, and understand systems at smaller and smaller scales, this work focuses on nanoscopic experimental investigations of the EDL. In that vein, atomic force microscopy (AFM) will be introduced and discussed as a tool for making high spatial resolution measurements of the solid-liquid interface, culminating in a description of the development of a method for completely characterizing the EDL.
This thesis first explores, in a semi-historical fashion, the development of the various models and theories that are used to describe the electrostatic double layer. Later, various experimental techniques and ideas are addressed as ways to make measurements of interesting characteristics of the EDL. Finally, a newly developed approach to measuring the EDL system with AFM is introduced. This approach relies on both implementation of existing theoretical models with slight modifications as well as a unique experimental measurement scheme. The model proposed clarifies previous ambiguities in definitions of various parameters pertaining to measurements of the EDL and also can be used to fully characterize the system in a way not yet demonstrated.
Rights
© 2016, Jason Giamberardino
Recommended Citation
Giamberardino, J.(2016). Measurements Of Electrostatic Double Layer Potentials With Atomic Force Microscopy. (Master's thesis). Retrieved from https://scholarcommons.sc.edu/etd/3895