Document Type

Article

Abstract

Achieving the fast oxygen reduction reaction (ORR) kinetics at the cathode of solid oxide fuel cells (SOFCs) is indispensable to enhance the efficiency of SOFCs at intermediate temperatures. Mixed ionic and electronic conducting (MIEC) oxides such as ABO3 perovskites and Ruddlesden-Popper (RP) oxides (A2BO4) have been widely used as promising cathode materials owing to their attractive physicochemical properties. In particular, oxides in forms of thin films and heterostructures have enabled significant enhancement in the ORR activity. Therefore, we aim to give a comprehensive overview on the recent development of thin film cathodes of SOFCs. We discuss important advances in ABO3 and RP oxide thin film cathodes for SOFCs. Our attention is also paid to the influence of oxide heterostructure interfaces on the ORR activity of SOFC cathodes.

Rights

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Yang, G., Jung, W., Ahn, S.-J., & Lee, D. (2019). Controlling the Oxygen Electrocatalysis on Perovskite and Layered Oxide Thin Films for Solid Oxide Fuel Cell Cathodes. Applied Sciences, 9(5), 1030. doi:10.3390/app9051030

Share

COinS