Document Type



n this study, we demonstrate the production of long-chain hydrocarbons (C8+) from 2-methylfuran (2MF) and butanal in a single step reactive process by utilizing a bi-functional catalyst with both acid and metallic sites. Our approach utilizes a solid acid for the hydroalkylation function and as a support as well as a transition metal as hydrodeoxygenation catalyst. A series of solid acids was screened, among which MCM-41 demonstrated the best combination of activity and stability. Platinum nanoparticles were then incorporated into the MCM-41. The Pt/MCM-41 catalyst showed 96% yield for C8+ hydrocarbons and the catalytic performance was stable over four reaction cycles of 20 hour each. The reaction pathways for the production of long-chain hydrocarbons is probed with a combination of infrared spectroscopy and steady-state reaction experiments. It is proposed that 2MF and butanal go through hydroalkylation first on the acid site followed by hydrodeoxygenation to produce the hydrocarbon fuels.


©Physical Chemistry Chemical Physics 2014, Royal Society of Chemistry.

This article cannot be redistributed or further made available.

This article was first published by the Royal Society of Chemistry and can be found at

Wen, C., Barrow, E., Hattrick-Simpers, J., & Lauterbach, J. (2014). One-Step Production of Long-Chain Hydrocarbons from Waste-Biomass-Derived Chemicals using Bi-Functional Heterogeneous Catalysts. Physical Chemistry Chemical Physics, 16 (7), 3047 – 3054.