Document Type



A series of spirocyclic copolymer membranes with varying ion exchange capacities (IECs) were investigated to probe the impact of polymer properties on in situ fuel cell performance and stability. In-situ electrochemical tests and post-mortem electron microscopy analysis of cross-sectioned membrane electrode assemblies (MEAs) have been combined with voltage loss breakdown analysis to evaluate the performance and degradation of different MEAs, and to probe the catalyst morphology and electrode structure at different stages of operation. Voltage loss breakdown results show that membrane degradation and kinetic losses played only a minor role in observed performance degradation and that performance losses were primarily related to increasing mass transport losses. From microscopy studies, carbon corrosion and Pt nanoparticle growth were identified at both the cathode and anode although more pronounced on the cathode resulting in significant structural changes. The membrane with the lowest IEC (1.3 mmolg−1) demonstrated the lowest peak power density ~ 1.16 W cm−2, however, it showed the most stable performance (constant 0.6 A cm−2 hold) with ~ 5% degradation over 540 h. Isolation of performance losses and microscopic analysis of electrodes for anion exchange membrane fuel cells has not been reported previously, and these results help identify critical performance degradation concerns.

Digital Object Identifier (DOI)


© 2021 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BYNC-ND,, which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email:

APA Citation

Yang-Neyerlin, A. C., Medina, S., Meek, K. M., Strasser, D. J., He, C., Knauss, D. M., Mustain, W. E., Pylypenko, S., & Pivovar, B. S. (2021). Editors’ choice—examining performance and durability of anion exchange membrane fuel cells with novel Spirocyclic anion exchange membranes. Journal of The Electrochemical Society, 168(4), 044525.