Document Type
Conference Proceeding
Abstract
This work addresses challenges arising from extracting entities from textual data, including the high cost of data annotation, model accuracy, selecting appropriate evaluation criteria, and the overall quality of annotation. We present a framework that integrates Entity Set Expansion (ESE) and Active Learning (AL) to reduce the annotation cost of sparse data and provide an online evaluation method as feedback. This incremental and interactive learning framework allows for rapid annotation and subsequent extraction of sparse data while maintaining high accuracy. We evaluate our framework on three publicly available datasets and show that it drastically reduces the cost of sparse entity annotation by an average of 85% and 45% to reach 0.9 and 1.0 F-Scores respectively. Moreover, the method exhibited robust performance across all datasets.
Publication Info
Published in Proceedings of the 27th International Conference on Computational Linguistics, 2018, pages 700-710.
© Hussein Al-Olimat, Steven Gustafson, Jason Mackay, Krishnaprasad Thirunarayan, Amit Sheth 2018, Association for Computational Linguistics.
Published under a Creative Commons Atrribution 4.0 International License.
APA Citation
Al-Olimat, H., Gustafson, S., Mackay, J., Thirunarayan, K., & Sheth, A. (2018). A Practical Incremental Learning Framework For Sparse Entity Extraction. Proceedings of the 27th International Conference on Computational Linguistics, 700–710. Retrieved from https://www.aclweb.org/anthology/C18-1059