Document Type
Article
Abstract
As the role of online platforms has become increasingly prominent for communication, toxic behaviors, such as cyberbullying and harassment, have been rampant in the last decade. On the other hand, online toxicity is multi-dimensional and sensitive in nature, which makes its detection challenging. As the impact of exposure to online toxicity can lead to serious implications for individuals and communities, reliable models and algorithms are required for detecting and understanding such communications. In this paper We define toxicity to provide a foundation drawing social theories. Then, we provide an approach that identifies multiple dimensions of toxicity and incorporates explicit knowledge in a statistical learning algorithm to resolve ambiguity across such dimensions.
Digital Object Identifier (DOI)
Publication Info
Preprint version Neurocomputing, 2021.
© The Authors, 2021.
APA Citation
Sheth, A., Shalin, V. L., & Kursuncu, U. (2021, April). Defining and detecting toxicity on social media: Context and knowledge are key. Neurocomputing. https://doi.org/10.1016/j.neucom.2021.11.095
Included in
Anthropology Commons, Communication Commons, Computer Engineering Commons, Digital Humanities Commons, Electrical and Computer Engineering Commons, Library and Information Science Commons, Other Languages, Societies, and Cultures Commons, Other Social and Behavioral Sciences Commons, Psychology Commons, Religion Commons, Sociology Commons