Efficient Querying for Cooperative Probabilistic Commitments
Document Type
Conference Proceeding
Abstract
Multiagent systems can use commitments as the core of a general coordination infrastructure, supporting both cooperative and non-cooperative interactions. Agents whose objectives are aligned, and where one agent can help another achieve greater reward by sacrificing some of its own reward, should choose a cooperative commitment to maximize their joint reward. We present a solution to the problem of how cooperative agents can efficiently find an (approximately) optimal commitment by querying about carefully-selected commitment choices. We prove structural properties of the agents' values as functions of the parameters of the commitment specification, and develop a greedy method for composing a query with provable approximation bounds, which we empirically show can find nearly optimal commitments in a fraction of the time methods that lack our insights require.
Publication Info
Preprint version 2020.
© Association for the Advancement of Artificial Intelligence, 2021
APA Citation
Zhang, Q., Durfee, E. H., & Singh, S. (2020). Efficient Querying for Cooperative Probabilistic Commitments. ArXiv:2012.07195 [Cs]. http://arxiv.org/abs/2012.07195