Joint Extraction of Compound Entities and Relationships from Biomedical Literature
Document Type
Article
Abstract
In this paper we identify some limitations of contemporary information extraction mechanisms in the context of biomedical literature. We present an extraction mechanism that generates structured representations of textual content. Our extraction mechanism achieves this by extracting compound entities, and relationships between them, occuring in text. A detailed evaluation of the relationship and compound entities extracted is presented. Our results show over 62% average precision across 8 relationship types tested with over 82% average precision for compound entity identification1.
Publication Info
IEEE/WIC/ACM International Conference on Web Intelligence (WI-08), 2008.
© Ramakrishnan, C., Mendes, P. N., de Gama, R. A., Ferreira, G. C., & Sheth, A. P., 2008
APA Citation
Ramakrishnan, C., Mendes, P. N., de Gama, R. A., Ferreira, G. C., & Sheth, A. P. (2008). Joint Extraction of Compound Entities and Relationships from Biomedical Literature.
https://corescholar.libraries.wright.edu/knoesis/338