https://doi.org/10.1007/11926078_42">
 

A Framework for Schema-Driven Relationship Discovery from Unstructured Text

Document Type

Conference Proceeding

Abstract

We address the issue of extracting implicit and explicit relationships between entities in biomedical text. We argue that entities seldom occur in text in their simple form and that relationships in text relate the modified, complex forms of entities with each other. We present a rule-based method for (1) extraction of such complex entities and (2) relationships between them and (3) the conversion of such relationships into RDF. Furthermore, we present results that clearly demonstrate the utility of the generated RDF in discovering knowledge from text corpora by means of locating paths composed of the extracted relationships.

Digital Object Identifier (DOI)

https://doi.org/10.1007/11926078_42

APA Citation

Ramakrishnan, C., Kochut, K., & Sheth, A. P. (2006). A Framework for Schema-Driven Relationship Discovery from Unstructured Text. Lecture Notes in Computer Science, 4273, 583-596.
https://corescholar.libraries.wright.edu/knoesis/712

Share

COinS