A Framework for Schema-Driven Relationship Discovery from Unstructured Text
Document Type
Conference Proceeding
Abstract
We address the issue of extracting implicit and explicit relationships between entities in biomedical text. We argue that entities seldom occur in text in their simple form and that relationships in text relate the modified, complex forms of entities with each other. We present a rule-based method for (1) extraction of such complex entities and (2) relationships between them and (3) the conversion of such relationships into RDF. Furthermore, we present results that clearly demonstrate the utility of the generated RDF in discovering knowledge from text corpora by means of locating paths composed of the extracted relationships.
Digital Object Identifier (DOI)
Publication Info
Published in International Semantic Web Conference, Volume 4273, 2006, pages 583-596.
© Lecture Notes in Computer Science 2006, Springer
APA Citation
Ramakrishnan, C., Kochut, K., & Sheth, A. P. (2006). A Framework for Schema-Driven Relationship Discovery from Unstructured Text. Lecture Notes in Computer Science, 4273, 583-596.
https://corescholar.libraries.wright.edu/knoesis/712