Document Type
Article
Abstract
BACKGROUND: Limit dextrinase inhibitor (LDI) inhibits starch degradation in barley grains during malting because it binds with limit dextrinase (LD). There is a wide genetic variation in LDI synthesis and inactivation during barley grain development and germination. However, the genetic control of LDI activity remains little understood. RESULTS: In this study, association analysis was performed on 162 Tibetan wild accessions by using LDI activity, 835 Diversity Arrays Technology (DArT) markers and single nucleotide polymorphisms (SNPs) of the gene HvLDI encoding LDI. Two DArT markers, bpb-8347, bpb-0068, and 31 SNPs of HvLDI were significantly associated with LDI activity, explaining 10.0%, 6.6% and 13.4% of phenotypic variation, respectively. Bpb-8347 is located on chromosome 6H, near the locus of HvLDI, and bpb-0068 is located on 3H. CONCLUSIONS: The current results confirmed the locus of the gene controlling LDI activity and identified a new DArT markers associated with LDI activity. The SNPs associated with LDI activity may provide a new insight into the genetic variation of LDI activity in barley grains.
Digital Object Identifier (DOI)
Publication Info
BMC Plant Biology, Volume 14, 2014, pages 117-.
APA Citation
Huang, Y., Cai, S., Ye, L., Han, Y., Wu, D., Dai, F., Li, C., & Zhang, G. (2014). Genetic architecture of limit dextrinase inhibitor (LDI) activity in Tibetan wild barley. BMC Plant Biology, 14.https://doi.org/10.1186/1471-2229-14-117
Rights
© 2014 Huang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.