https://doi.org/10.1002/nur.22268

">
 

Delirium Detection Using Gamma Wave and Machine Learning: A Pilot Study

Document Type

Article

Abstract

Delirium occurs in as many as 80% of critically ill older adults and is associated with increased long-term cognitive impairment, institutionalization, and mortality. Less than half of delirium cases are identified using currently available subjective assessment tools. Electroencephalogram (EEG) has been identified as a reliable objective measure but has not been feasible. This study was a prospective pilot proof-of-concept study, to examine the use of machine learning methods evaluating the use of gamma band to predict delirium from EEG data derived from a limited lead rapid response handheld device. Data from 13 critically ill participants aged 50 or older requiring mechanical ventilation for more than 12 h were enrolled. Across the three models, accuracy of predicting delirium was 70 or greater. Stepwise discriminant analysis provided the best overall method. While additional research is needed to determine the best cut points and efficacy, use of a handheld limited lead rapid response EEG device capable of monitoring all five cerebral lobes of the brain for predicting delirium hold promise.

Digital Object Identifier (DOI)

https://doi.org/10.1002/nur.22268

APA Citation

Mulkey, M., Albanese, T., Kim, S., Huang, H., & Yang, B. (2022). Delirium detection using GAMMA wave and machine learning: A pilot study. Research in Nursing & Health, 45(6), 652–663. https://doi.org/10.1002/nur.22268

Rights

© 2022 Wiley Periodicals LLC.

Share

COinS