https://doi.org/10.1523/JNEUROSCI.0801-19.2019

">
 

Document Type

Article

Abstract

Serum amyloid A (SAA) proteins are acute-phase reactant associated with high-density lipoprotein (HDL) particles and increase in the plasma 1000-fold during inflammation. Recent studies have implicated SAAs in innate immunity and various disorders; however, the precise mechanism eludes us. Previous studies have shown SAAs are elevated following stroke and cerebral ischemia, and our studies demonstrated that SAA-deficient mice reduce inflammation and infarct volumes in a mouse stroke model. Our studies demonstrate that SAA increases the cytokine interleukin-1β (IL-1β), which is mediated by Nod-like receptor protein 3 (NLRP3) inflammasome, cathepsin B, and caspase-1 and may play a role in the pathogenesis of neurological disorders. SAA induced the expression of NLRP3, which mediated IL-1β induction in murine BV-2 cells and both sex primary mouse microglial cells, in a dose- and time-dependent fashion. Inhibition or KO of the NLRP3 in microglia prevented the increase in IL-1β. N-acetyl-l-cysteine and mito-TEMPO blocked the induction of IL-1β by inhibiting ROS with SAA treatment. In addition, inhibition of cathepsin B with different drugs or microglia from CatB-deficient mice attenuated inflammasome activation. Our studies suggest that the impact of SAA on inflammasome stimulation is mediated in part by the receptor for advanced glycation endproducts and Toll-like receptor proteins 2 and 4. SAA induced inflammatory cytokines and an M1 phenotype in the microglial cells while downregulating anti-inflammation M2 phenotype. These studies suggest that brain injury to can elicit a systemic inflammatory response mediated through SAA that contributes to the pathological outcomes. In the present study, serum amyloid A can induce that activation of the inflammasome in microglial cells and give rise to IL-1β release, which can further inflammation in the brain following neurological diseases. The also presents a novel target for therapeutic approaches in stroke.

Digital Object Identifier (DOI)

https://doi.org/10.1523/JNEUROSCI.0801-19.2019

APA Citation

Yu, J., Zhu, H., Taheri, S., Mondy, W., Bonilha, L., Magwood, G., Lackland, D. T., Adams, R. J., & Kindy, M. S. (2019). Serum Amyloid A-Mediated Inflammasome Activation of Microglial Cells in Cerebral Ischemia. The Journal of Neuroscience,, 39,/i>(47), 9465–9476.https://doi.org/10.1523/JNEUROSCI.0801-19.2019

Rights

© 2019 the authors Authors grant JNeurosci a license to publish their work and copyright remains with the author. For articles published after 2014, the Society for Neuroscience (SfN) retains an exclusive license to publish the article for 6 months; after 6 months, the work becomes available to the public to copy, distribute, or display under the terms of the Creative Commons Attribution 4.0 International License (CC-BY). This license allows data and text mining, use of figures in presentations, and posting the article online, provided that the original article is credited.

Included in

Nursing Commons

Share

COinS