Document Type

Article

Subject Area(s)

Chemical Engineering

Abstract

A mathematical model is presented for a system comprised of a parallel plate electrochemical reactor (PPER) and a continuous, stirred-tank reactor (CSTR) under both total and partial recycle. The model is used to predict the time dependent behavior of the electrowinning of copper from an aqueous, hydrochloric acid solution. The model includes many important aspects of a PPER/CSTR system which have been neglected previously. These aspects are the kinetics of electrode reactions, the electroneutrality condition, three mass transfer processes for ionic species in the electrolyte (diffusion, ionic migration, and convection) and the electrode gap in the PPER, and the inclusion of a true CSTR in the recycle stream.

Rights

© The Electrochemical Society, Inc. 1986. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in Journal of the Electrochemical Society.

http://www.electrochem.org/

Publisher's Version: http://dx.doi.org/10.1149/1.2108799

DOI: 10.1149/1.2108799

Share

COinS