Document Type
Article
Subject Area(s)
Chemical Engineering
Abstract
A mathematical model is presented for the lithium intercalation of a single spinel particle as a microelectrode under the stimulus of a cyclic linear potential sweep. The model includes both lithium diffusion within the particle and kinetics at the particle/electrolyte interface. The model is used to predict that peak current densities depend linearly on the scan rate to a certain power with a constant term, which is different from the predicted peak current density for a conventional redox system.
Publication Info
Journal of the Electrochemical Society, 2000, pages 831-838.
Rights
© The Electrochemical Society, Inc. 2000. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in the Journal of the Electrochemical Society.
Publisher's link: http://dx.doi.org/10.1149/1.1393279
DOI: 10.1149/1.1393279