Document Type

Article

Subject Area(s)

Chemical Engineering

Abstract

A two-dimensional (2-D) energy balance (the 2D model) is reduced to a one-dimensioanl (1-D) energy balance (the 1D-radial-spiral model) by a coordinate transformation approach. The 1D-radial-spiral model, even though 1-D, captures both radial and spiral heat conductions over a wide range of design parameters. By comparing the temperature predictions of the 1D-radial-spiral model and the 2D model, parameter ranges were identified where spiral conduction was important and where the 1D-radial-spiral model held. The 1D-radial-spiral model provided a sixtyfold savings in computation time over the 2D model. When coupled to electrochemistry, the 2D model took approximately 20 h to simulate a 2C discharge of a Li-ion battery, while the 1D-radial-spiral model took about 20 min.

Rights

© The Electrochemical Society, Inc. 2003. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in the Journal of the Electrochemical Society.

http://www.electrochem.org/

Publisher's link: http://dx.doi.org/10.1149/1.1605743

DOI: 10.1149/1.1605743

Share

COinS