Document Type

Article

Subject Area(s)

Chemistry

Abstract

A fluorescent compound has been detected in proteins browned during Maillard reactions with glucose in vitro and shown to be identical to pentosidine, a pentose- derived fluorescent cross-link formed between arginine and lysine residues in collagen (Sell, D. R., and Monnier, V. M. (1989) J. Biol. Chem. 264, 21597- 2 1602). Pentosidine was the major fluorophore formed during nonenzymatic browning of ribonuclease and lysozyme by glucose, but accounted for <1% of nondisulfide cross-links in protein dimers formed during the reaction. Pentosidine was formed in greatest yields in reactions of pentoses with lysine and arginine in model systems but was also formed from glucose, fructose, ascorbate, Amadori compounds, 3-deoxyglucosone, and other sugars. Pentosidine was not formed from peroxidized polyunsaturated fatty acids or malondialdehyde. Its formation from carbohydrates was inhibited under nitrogen or anaerobic conditions and by aminoguanidine, an inhibitor of advanced glycation and browning reactions. Pentosidine was detected in human lens proteins, where its concentration increased gradually with age, but it did not exceed trace concentrations (55 Fmol/mol lysine), even in the 80-year-old lens. Although its precise carbohydrate source in vivo is uncertain and it is present in only trace concentrations in tissue proteins, pentosidine appears to be a useful biomarker for assessing cumulative damage to proteins by nonenzymatic browning reactions with carbohydrates.

Rights

This research was originally published in the Journal of Biological Chemistry. Dyer DG, Blackledge JA, Thorpe SR, Baynes JW. Formation of Pentosidine during Nonenzymatic Browning of Proteins by Glucose. Journal of Biological Chemistry. 1991, 266:11654-11660. © the American Society for Biochemistry and Molecular Biology.

Included in

Chemistry Commons

Share

COinS