Document Type



Impervious surface area (ISA) is a key factor for monitoring urban environment and land development. Automatic mapping of impervious surfaces has attracted growing attention in recent years. Spectral built-up indices are considered promising to map ISA distributions due to their easy, parameter-free implementations. This study explores the potentials of impervious surface indices for ISA mapping from Landsat imagery using a case study area in Boston, USA. A modified normalized difference impervious surface index (MNDISI) is proposed, and a Gaussian-based automatic threshold selection method is used to identify the optimal MNDISI threshold for delineating impervious surfaces from background features. To evaluate its effectiveness, comparison analysis is conducted between MNDISI and the original NDISI using Landsat images from three sensors (TM/ETM+/OLI-TIRS) acquired in four seasons. Our results suggest that built-up indices are sensitive to image seasonality, and summer is the best time phase for ISA mapping. With reduced uncertainties from automatic threshold selection, the MNDISI extracts impervious surfaces from all Landsat images in summer with an overall accuracy higher than 87% and an overall Kappa coefficient higher than 0.74. The proposed method is superior to previous index-based ISA mapping from the enhanced thermal integration and automatic threshold selection. The ISA maps from the TM, ETM+ and OLI-TIRS images are not significantly different. With enlarged data pool when all Landsat sensors are considered and automation of threshold selection proposed in this study, the MNDISI could be an effective built-up index for rapid and automatic ISA mapping at regional and global scales.


© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (

Sun, Z., Wang, C., Guo, H., & Shang, R. (2017). A modified normalized difference impervious surface index (Mndisi) for automatic urban mapping from landsat imagery. Remote Sensing, 9(9), 942. doi:10.3390/rs9090942

Included in

Geography Commons