Date of Award

Fall 2022

Document Type

Open Access Dissertation


College of Pharmacy

First Advisor

Hippokratis Kiaris


Endoplasmic reticulum (ER) stress has been linked to various metabolic pathologies, neurodegeneration, and aging. Although various mechanistic aspects of the resulting unfolded protein response (UPR) have been elucidated, its regulation in genetically diverse populations remains elusive. In the present study we evaluated the expression of chaperones BiP/GRP78, GRP94 and calnexin (CANX) in the lungs, liver, and brain of 7 months old and 2–3 years old outbred deer mice P. maniculatus and P. leucopus. Chaperones’ _expression was highly variable between species, tissues and ages suggesting that levels of expression of individual chaperones do not change consistently during aging. Despite this variation, a high degree of coordination was maintained between chaperones’ _expression indicating the tight regulation of the UPR which is consistent with its adaptive activity to maintain homeostasis. In the brain though of older P. maniculatus, at which neurodegenerative changes were detected, loss of coordination was revealed, especially between BiP and either of GRP94 or calnexin which indicates that de-coordination rather than aberrant expression is linked to deregulation of the UPR in aging. These findings underscore the involvement of UPR in the onset of aging-related pathologies and suggest that beyond levels of expression, concerted activation may be of significance to attain homeostasis. These findings emphasize the value of genetically diverse models and suggest that beyond levels of expression of individual targets the coordination of transcriptional networks should be considered when links to pathology are explored.

Genes that belong to the same network are frequently co-expressed, but collectively, how the coordination of the whole transcriptome is perturbed during aging remains unclear. To explore this, we calculated the correlation of each gene in the transcriptome with every other, in the brain of young and older outbred deer mice (P. leucopus and P. maniculatus) and also, we evaluated the coordination of chaperons expression during aging with whole trascriptome. In about 25 % of the genes, coordination was inversed during aging. Gene Ontology analysis in both species, for the genes that exhibited inverse transcriptomic coordination during aging pointed to alterations in the perception of smell, a known impairment occurring during aging. In P. leucopus, alterations in genes related to cholesterol metabolism were also identified. Among the genes that exhibited the most pronounced inversion in their coordination profiles during aging was THBS4, that encodes for thrombospondin 4, a protein that was recently identified as rejuvenation factor in mice. Relatively to its breadth, abolishment of coordination was more prominent in the long-living P. leucopus than in P. maniculatus but in the latter, the intensity of de-coordination was higher. The results suggest that aging is associated with more stringent retention of expression profiles for some genes and more abrupt changes in others, while more subtle but widespread changes in gene expression appear protective. Our findings shed light in the mode of the transcriptional changes occurring in the brain during aging and suggest that strategies aiming to broader but more modest changes in gene expression may be preferrable to correct aging-associated deregulation in gene expression.


© 2022, Elham Soltanmohammadi

Available for download on Sunday, December 15, 2024