Date of Award

Fall 2018

Document Type

Open Access Dissertation

Department

Chemistry and Biochemistry

First Advisor

Natalia B. Shustova

Abstract

Merging the intrinsic properties of fullerene (buckyball) and corannulene (buckybowl) derivatives with the inherent properties of crystalline metal- and covalent- organic frameworks (MOFs and COFs), including their modularity, porosity, versatility, high surface area, and structural tunability, opens a pathway to unlock a novel class of fulleretic materials. Despite the great interest in MOFs and COFs, as well as fullerene derivatives, this dissertation is focused on crystalline fullerene- and corannulene- containing frameworks, highlighting their potential contributions in the fields of optoelectronic devices, electrodes, and photosensitizers. We have revealed a dual role of fullerene- and corannulene-containing building blocks showing their versatility to act as either a framework linker or a guest inside the pores. The work presented within the following six chapters is focused on the design, synthesis, and characterization of corannulene and fullerene-based MOFs and COFs that target fundamental understanding of ET processes in predesigned pathways, charge transfer processes, and the ability to tune the electronic structures of novel materials. Overall, this work encompasses a rising new field in which fulleretic crystalline frameworks are not only structural and synthetic masterpieces but also valuable potential materials to the ever-expanding technological landscape.

Rights

© 2018, Allison M. Rice

Included in

Chemistry Commons

Share

COinS