Date of Award


Document Type

Campus Access Dissertation


Mechanical Engineering

First Advisor

Xiaodong Li


Tin (Sn) and its alloys have been at people's service since 3000 BC when bronze (alloy of tin and copper) was produced in large scale. They have unique properties and find applications in various engineering fields. Correspondingly, there is abundant information waiting to be clarified surrounding these Sn-related materials. As the key element used for solder alloys, the properties of Sn alloys have been of great interest to the electronic packaging community. At the same time, the intriguing phenomenon of spontaneous Sn whisker growth from Sn / Sn-alloy thin films have bothered, yet also inspired materials scientists for over 60 years. The most commonly seen Sn-containing compound, SnO2, is in high demand as well due to its exceptional electronic and chemical properties. In addition, nanostructures of SnO2 are intensively studied for their potential applications as solid-state sensors, transparent conducting materials, lithium-ion batteries, high-efficiency solar cell and recently, supercapacitors.

The objective of this proposed research is to explore the amazing properties of Sn and Sn-alloys from several different perspectives. Firstly, ever since the banish of lead in solder alloys, lead-free alloys such as Sn-Ag-Cu (SAC) has been put under the spotlight. We intend to use our expertise in nanomechanics to give an in-depth and thorough investigation on a popular SAC387 alloy. The mechanical properties of each phase and the local deformation mechanisms have been considered. Secondly, the Sn whisker growth phenomenon is to be re-visited. With the aid of digital image correlation (DIC) techniques, it was found that magnitude of the strain gradient plays an important role in whisker growth. Moreover, DIC helps to visualize the dynamic growth process in which the alteration of strain field has been identified to cause growth of subsequent whiskers. Last but not least, the performance of SnO2 nanowires is to be evaluated in several aspects including mechanical properties, gas sensing properties and energy applications. Through state-of-the-art technologies such as high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) and DIC, we have already successfully correlated the magnificent properties of SnO2 nanowires with its atomistic structure near the surface.