Document Type



In this the first part of a two-part paper, the gas-diffusion process through a thick and porous tubular cathode substrate of a solid oxide fuel cell-(SOFC) was theoretically analyzed using classic Fick’s diffusion equation under the cylindrical coordinate system. The effects of current density, temperature, oxygen diffusivity or porosity, wall thickness, and bulk pO2 on the concentration (or pore in this paper) polarization were calculated and are presented graphically. The results clearly show a greater impact on pore polarization by current density, oxygen diffusivity, wall thickness, and bulk pO2, but not by temperature. In addition, the limiting current density, which is a characteristic of a material, was also derived based on the solved cylindrical-coordinated diffusion equation.