Document Type

Article

Abstract

The electrode performance of a single solid oxide fuel cell was evaluated using a 500 μm thick La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) as the electrolyte membrane. Comparison of La0.6Sr0.4CoO3-δ (LSCo) and La0.9Sr0.1MnO3 (LSM) as cathodes showed LSCo gave an exchange current density two orders of magnitude higher than that of LSM. Comparison of CeO2/Ni and LSGM/Ni as anodes showed a degradation of the latter with time, and studies of the anode‐electrolyte interface and the reactivity of NiO and LSGM suggest better anode performances can be obtained with a buffer layer that prevents formation of LaNiO3 . The cell performance showed that, with a proper choice of electrode materials and LSGM as the electrolyte, a SOFC operating at temperatures 600°C < Top < 800°C is a realistic goal.

Share

COinS