Date of Award


Document Type

Open Access Thesis




The Norman J. Arnold School of Public Health

First Advisor

James W. Hardin


This paper explores the double Poisson distribution. The probability mass function and the difficulties associated with derivative-based optimization for this distribution are discussed. Stata software developed for estimation of double Poisson regression is detailed. Simulations are used to test the software. Data which are over-, under-, and equidispersed relative to the Poisson are generated and the software is utilized to estimate a regression model, a zero-inflated model, and a marginalized zero-inflated model all based on the double Poisson distribution. The estimated power of the test for φ = 1 for the double Poisson models are compared to the power of the test for α = 0 for the negative binomial models. Coefficient estimation is also compared across the models.

Included in

Biostatistics Commons