Date of Award


Document Type

Open Access Thesis


Marine Science

First Advisor

Ronald H Benner


Rivers contribute about 0.25 Pg of terrigenous dissolved organic carbon (tDOC) to the ocean each year. The fate and transformations of this material have important ramifications for the metabolic state of the ocean, air-sea CO2 exchange, and the global carbon cycle. Stable isotopic compositions and terrestrial biomarkers suggest tDOC must be efficiently mineralized in ocean margins. Nonetheless, the extent of tDOC mineralization in these environments remains unknown, as no quantitative estimate is available. The complex interplay of biogeochemical and physical processes in these systems compounded by the limited practicality of chemical proxies (organic biomarkers, isotopic compositions) make the quantification of tDOC mineralization in these dynamic systems particularly challenging. In this dissertation, new optical proxies were developed (Chapters 1 and 2) and facilitated the first quantitative assessment of tDOC mineralization in a dynamic river-influenced ocean margin (Chapter 3) and the monitoring of continental runoff distributions in the coastal ocean using remote sensing (Chapter 4).

The optical properties of chromophoric dissolved organic matter (CDOM) were used as optical proxies for dissolved organic carbon concentration ([DOC]) and %tDOC. In both proxies, the CDOM spectral slope coefficient (S275-295) was exploited for its informative properties on the chemical nature and composition of dissolved organic matter. In the first proxy, a strong relationship between S275-295 and the ratio of CDOM absorption to [DOC] facilitated accurate retrieval (±4%) of [DOC] from CDOM. In the

second proxy, the existence of a strong relationship between S275-295 and the DOC-normalized lignin yield facilitated the estimation of the %tDOC from S275-295. Using the proxies, the tDOC concentration can be retrieved solely from CDOM absorption coefficients (&lambda = 275-295 nm) in river-influenced ocean margins.

The practicality of optical proxies facilitated the calculation of tDOC mineralization rates on the Louisiana shelf. Seasonal tDOC mass balances for the shelf revealed that between 26% (winter) and 71% (summer) of the mixed layer tDOC is mineralized during its residence on the shelf. Independent approaches further indicated biomineralization accounts for 60% of the tDOC mineralization whereas photomineralization contributes only 8%. The remaining 32% was attributed to the coupled photo-biomineralization. On an annual basis, our results indicated ~40% of the tDOC discharged by the Mississippi and Atchafalaya rivers to the Louisiana shelf (~1 Tg tDOC) is mineralized within 2 to 3 months. This extensive mineralization on the shelf is direct evidence ocean margins act as efficient filters of tDOC between the land and ocean. Finally, the amenability of S275-295 to ocean color remote sensing was demonstrated, and facilitates the real-time, synoptic monitoring of tDOC and freshwater runoff in coastal waters. Implementation of this approach provided the first pan-Arctic distributions of tDOC and continental runoff in surface polar waters, and will help understand the manifestations of climate change in this remote region.

Included in

Life Sciences Commons