Document Type

Article

Subject Area(s)

Genomics

Abstract

Motivation

Identification of differentially expressed genes from microarray datasets is one of the most important analyses for microarray data mining. Popular algorithms such as statistical t-test rank genes based on a single statistics. The false positive rate of these methods can be improved by considering other features of differentially expressed genes.

Results

We proposed a pattern recognition strategy for identifying differentially expressed genes. Genes are mapped to a two dimension feature space composed of average difference of gene expression and average expression levels. A density based pruning algorithm (DB Pruning) is developed to screen out potential differentially expressed genes usually located in the sparse boundary region. Biases of popular algorithms for identifying differentially expressed genes are visually characterized. Experiments on 17 datasets from Gene Omnibus Database (GEO) with experimentally verified differentially expressed genes showed that DB pruning can significantly improve the prediction accuracy of popular identification algorithms such as t-test, rank product, and fold change.

Conclusions

Density based pruning of non-differentially expressed genes is an effective method for enhancing statistical testing based algorithms for identifying differentially expressed genes. It improves t-test, rank product, and fold change by 11% to 50% in the numbers of identified true differentially expressed genes. The source code of DB pruning is freely available on our websitehttp://mleg.cse.sc.edu/degprune

Rights

© BMC Genomics 2010, BioMed Central

Hu, J. & Xu, J. (2010). Density based pruning for identification of differentially expressed genes from microarray data. BMC Genomics, 11(2)(S3).

http://dx.doi.org/10.1186/1471-2164-11-S2-S3

Link to License:

https://creativecommons.org/licenses/by/4.0/legalcode

Included in

Genomics Commons

Share

COinS