Document Type
Article
Abstract
Human movements in urban areas are essential to understand human–environment interactions. However, activities and associated movements are full of uncertainties due to the complexity of a city. In this paper, we propose a novel sensor-based approach for spatiotemporal event detection based on the Discrete Empirical Interpolation Method. Specifically, we first identify the key locations, defined as “sensors”, which have the strongest correlation with the whole dataset. We then simulate a regular uneventful scenario with the observation data points from those key locations. By comparing the simulated and observation scenarios, events are extracted both spatially and temporally. We apply this method in New York City with taxi trip record data. Results show that this method is effective in detecting when and where events occur.
Digital Object Identifier (DOI)
Publication Info
Published in ISPRS International Journal of Geo-Information, Volume 13, Issue 5, 2024, pages 141-.
Rights
© The Author(s) 2021 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
APA Citation
Jiang, Y., Popov, A. A., Li, Z., Hodgson, M. E., & Huang, B. (2024). A Sensor-Based Simulation Method for Spatiotemporal Event Detection. ISPRS International Journal of Geo-Information, 13(5), 141. https://doi.org/10.3390/ijgi13050141