Document Type
Article
Abstract
Accessibility is a topic of interest to multiple disciplines for a long time. In the last decade, the increasing availability of data may have exceeded the development of accessibility modeling approaches, resulting in a modeling gap. In part, this modeling gap may have resulted from the differences needed for single versus multimodal opportunities for access to services. With a focus on large volumes of transportation data, a new measurement approach, called Urban Accessibility Relative Index (UARI), was developed for the integration of multi-mode transportation big data, including taxi, bus, and subway, to quantify, visualize and understand the spatiotemporal patterns of accessibility in urban areas. Using New York City (NYC) as the case study, this paper applies the UARI to the NYC data at a 500-m spatial resolution and an hourly temporal resolution. These high spatiotemporal resolution UARI maps enable us to measure, visualize, and compare the variability of transportation service accessibility in NYC across space and time. Results demonstrate that subways have a higher impact on public transit accessibility than bus services. Also, the UARI is greatly affected by diurnal variability of public transit service.
Digital Object Identifier (DOI)
Publication Info
Published in Computational Urban Science, Volume 1, Issue 1, 2021.
Rights
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit Creative Commons Attribution 4.0 license
APA Citation
Jiang, Y., Guo, D., Li, Z., & Hodgson, M. E. (2021). A novel big data approach to measure and visualize urban accessibility. Computational Urban Science, 1(1).https://doi.org/10.1007/s43762-021-00010-1