Date of Award


Document Type

Open Access Thesis


Biological Sciences

First Advisor

Master of Science


Dispersal is a core mechanism in the maintenance of metapopulations. It maintains genetic diversity by connecting subpopulations and generates new populations to replace those that die out. However, as populations become more isolated, as occurs in habitat fragmentation, dispersal becomes more difficult. This should lead to selective pressure against dispersive individuals, causing a reduction in dispersal traits. Over time, this can lead to variation in dispersal traits among populations. We examine this idea using an extreme case of isolation in Euphydryas gillettii, a population that has remained completely isolated for forty years. By comparing this population to a baseline established using multiple populations in the native range of the species, we found that the isolated population showed characteristics indicative of relatively low dispersal.