https://doi.org/10.1002/batt.202200056

">
 

Document Type

Article

Abstract

Intercalationpseudocapacitancecan combinecapacitor-likepower densitieswith battery-likeenergy densities.Such surface-limitedbehaviorrequiresrapid diffusionwhere amorphizationcan increasesolid-statediffusivity.Here intercalationpseudoca-pacitivematerialswith tailoredextentsof amorphizationin T-Nb2O5are first reported.Amorphizationwas characterizedwithWAXS, XPS, XAFS, and EPR which suggesteda peroxide-rich(O22) surface that was consistentwith DFT predictions.A seriesof tunableisomorphicarchitecturesenabledcomparisonswhileindependentlyvaryingtransportparameters.Throughprocessof elimination,solid-statelithium diffusionwas identifiedas thedominantdiffusive-constraintdictatingthe maximumvoltagesweep rate for surface-limitedkinetics(vSLT), termed the Surface-LimitedThreshold(SLT). ThevSLTincreasedwith amorphizationhoweverstable cycling requiredcrystallineT-Nb2O5. A current-responsemodel using series-impedanceswell-matchedtheseobservations.This perspectiverevealedthat amorphizationof T-Nb2O5enhancedsolid-statediffusionby 12.2% and increasedsurface-limitationsby 17.0% (stablesamples).This approachenabledretaining95% lithiationcapacityat ~800mVs1(1,600C-rate equivalent).

Digital Object Identifier (DOI)

https://doi.org/10.1002/batt.202200056

APA Citation

van den Bergh, W., Wechsler, S., Lokupitiya, H. N., Jarocha, L., Kim, K., Chapman, J., Kweon, K. E., Wood, B. C., Heald, S., & Stefik, M. (2022). Amorphization of Pseudocapacitive T−nb2o5 Accelerates Lithium Diffusivity as Revealed Using Tunable Isomorphic Architectures. Batteries & Supercaps, 5(6). https://doi.org/10.1002/batt.20220005

Share

COinS