




 

 
 

1
8
7 

Table 5.1. Measured geometric parameters in crystal structures of 1 and 2  

 
inclusion 

solvent 

solvent-

to-1 

ratios 

relative 

populationa 

rotation 

angle 

(θ) 

dihedral 

angle 

(α) 

interplanar 

distance 

(h) 

linker 

length 

(l) 

horizontal 

offset (d) 

stacking 

angle 

(β) 

CT profilee 

λmax 

(nm) 

λhalf-

height 

(nm) 

λon-

set 

(nm) 

1 

CH2Cl2 2:1 
76% b 56.5 78.4 3.49 4.48 0.17 6.3 

533 613 638 
24% b 63.6 78.4 3.54 4.48 0.57 7.1 

CH2Cl2 

& 

CH3CNd 

2:1 100% 57.4 76.9 3.55 4.48 0.25 6.4 531 620 646 

none 0 
28% b 33.1 75.4 3.68 4.41 0.58 5.1 

494 553 578 
72% b 42.2 75.4 3.60 4.36 0.35 5.7 

CH3NO2 2:1 100% 53.2 83.5 3.48 4.43 0.19 5.6 544 629 658 

EtNO2 2:1 
50% c 65.7 74.6 3.51 4.49 0.80 7.4 

535 612 643 
50% c 63.9 72.2 3.54 4.51 0.55 7.4 

dioxane 2:1 100% 51.9 73.8 3.55 4.50 0.38 4.7 547 591 612 

2 none 0 100% n/a 89.5 n/a 4.64 n/a n/a n/a n/a n/a 
a Relative population of multiple PYR-NDI geometries from partial disorder or multiple crystallographically independent molecules. 

(See later structure analysis section for details); b Partial disorder at the pyrene motif was resolved into two slightly differently CT 

interaction geometries; c Two crystallographically independent molecules of 1 were observed; d A volume of disordered solvent was 

modeled into three independent groups: one acetonitrile and two dichloromethane groups. e The UV-vis spectra were provided in Figure 

S10.   
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Figure 5.14 Solid-state diffuse reflectance UV-vis spectra of six-single crystals of 1 

highlighting the λmax, λhalf-height, and λon-set of the CT absorption band. 
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CHAPTER 6 

FUTURE WORK 
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1. Introduction 

We have demonstrated that the C-shape N-arylimide molecular balances are indeed 

excellent tools to investigate weak aromatic interactions in solution and solid-state 

environments.  However, this system still has the potential to be used in many other 

physical organic studies.  Some ideas for future work have already been mentioned in 

Section 7 in Chapter 1.  In this chapter, we briefly discussed two other on-going projects 

in our laboratory with the aim of highlighting the ability of these molecular balances to 

further contribute to the study of aromatic interactions.  The primary focus will be on the 

necessary molecular designs for these applications.  

2. Water-soluble molecular balance 

Aqueous solvent systems have been a “holy grail” in the experimental studies of 

non-covalent interactions due to their biological relevance.1-4  Moreover, the unique polar 

and cohesive nature of aqueous environment may exert dramatic impacts on various 

dispersion-driven aromatic interactions.5-7  One interesting research topic in this regard 

thus has been to isolate the solvophobic contributions to the interaction energy for various 

aromatic interactions in water.3,7,8  Unfortunately, our current molecular balances do not 

dissolve in protic solvents due to their predominant hydrophobic.  Therefore, modifications 

of this versatile model system that would lead to solubility in aqueous solvent systems are 

particularly desirable (Figure 6.1).    
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Figure 6.1 Schematic representation of two retro-synthetic 

strategies to prepare water-soluble molecular balances 

together with their corresponding starting materials.  The 

solubilizing groups or their precursors are highlighted in 

yellow.    

Figure 6.1 highlights two general strategies to water-soluble π-stacking molecular 

balances.  The common underlying idea is to incorporate solubilizing groups (highlighted 

in yellow) to counterbalance the predominant hydrophobic domain.  To effectively 

solubilize the molecular balance in solvents with high water content, however, the water-

solubilizing groups should contain multiple strong ionic hydrophilic sites, such as 

ammonium, carboxylate, phosphonate and sulfonate.  For example, strategy A that installs 

two tri-glycol methyl ether groups at the bridgehead of the bicyclic framework yielded a 

balance that dissolved in methanol but not in water.  In this regard, the strategy B is more 

promising since the carboxylic group could either turned into an ionic group as the salt 

form or serve as a “handle” to attach additional solubilizing groups.  Moreover, the 

carboxylic group can be masked into a less hydrophilic precursor, such as a methyl ester, 

during the synthesis and then unmasked in the last step, greatly relieving the complication 

of handling polar hydrophilic intermediates during the synthesis and purification.  
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3. Orthogonal multipolar interaction of N-heteroarenes 

Since the pioneering study on weak attractive C-F∙∙∙C=O interactions by Diederich 

and co-workers,9 more attention has been focused on the dipolar interactions between polar 

function groups in orthogonal alignments.10,11  The nature of multipolar interactions has 

been still under debate.  For example, the observed orthogonal C-F∙∙∙C=O interactions have 

been argued to come from an “n→π*” bond instead of a dipole-dipole interaction.12  The 

dipolar interactions of N-heteroarenes, however, have been rarely studied despite of their 

abundance in biological processes and pharmaceuticals.  Therefore, one interesting 

question is “do C-F and N-heteroarene form the unique multipolar interaction?”  Fluorine 

has been profoundly utilized in medicinal research to modulate the activity, selectivity, and 

stability of biologically active compounds.13  The unique ring dipole of N-heteroarenes 

may help better probe the nature of orthogonal multipolar interaction of C-F bonds. 

The ability of our C-shape N-arylimide molecular balances to enforce the designed 

intramolecular interaction geometry offers a means to experimentally investigate the 

orthogonal interactions between a C-F bond and pyridine ring (Figure 6.2 A).  Preliminary 

results suggest the existence of these favorable interaction.  The orthogonal C-F∙∙∙pyridine 

interaction (the dipole-dipole angle: 92°) observed in our molecular balance was clearly 

much more stabilizing in comparison with the C-F∙∙∙benzene interaction (Figure 6.2 B).  

Study of heterocyclic balance with the pyridine ring fixed in the opposite direction could 

help to test the “n→π*” hypothesis for the orthogonal interactions of C-F bonds.  This 

approach is currently being carried out in our laboratory. 
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Figure 6.2 (A) Front view of the X-ray crystal structure of a two-arm fluorine-

heteroarene balance (top) together with the ChemDraw representation (bottom), 

highlighting the orthogonal alignment between the C-F bond dipole and opposing 

pyridine ring dipole; (B) Measured folding energies for a series of F-arm balances 

with zero, one, and two heterocyclic nitrogens on the tricyclic shelf arene, 

highlighting the stabilizing orthogonal C-F∙∙∙pyridine interaction.  

4. Concluding Remark 

We briefly looked at two on-going projects utilizing the C-shape N-arylimide 

balances.  Future work will surely expand beyond those mentioned in this dissertation.  We 

hope this short chapter served to highlight the greater potential and bright future of this 

versatile balance model in exploring and assessing aromatic interactions.
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For chapter 2: 
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For chapter 3: 
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For chapter 4: 
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