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Figure 3.7 – Pathway expression summary: The number of differentially expressed genes 

(FDR ≤ 0.05) for the biological process gene ontology categories: response to stress 

(GO:0006950), immune system process (GO:0002376), homeostatic process 

(GO:0042592), carbohydrate metabolic process (GO:0005975), lipid metabolic process 

(GO:0006629), cell proliferation (GO:0008283) and cell death (GO:0008219) are shown 

for each multi-stressor treatment as compared to the control for the 7d, 28d and 56d time-

points. A bar above the black line indicates the number of up-regulated genes within that 

GO category, whereas the bar below the black lines indicates the number of down-

regulated gene within that GO category. 
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CHAPTER 4 

 

GENOME WIDE EXPRESSION ANALYSIS OF THE DUSKY ROCKCOD, 

TREMATOMUS NEWNESI, DEMONSTRATES A PARADOXICAL RESPONSE TO 

OCEAN ACIDIFICATION AND INCREASING SEA SURFACE TEMPERATURES.4 

 

  

                                                           
4 Huth, T. J., & Place, S. P.  To be submitted to G3: Genes Genomes Genetics 
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4.1 INTRODUCTION 

 The Antarctic notothenioid fish of the Southern Ocean have long drawn the 

attention of polar researches due to their dominance of the Southern Ocean fauna(J. T. 

Eastman, 2005; J. Eastman, 1993; Gon & Heemstra, 1990) and their unique cold adapted 

physiology (Bilyk et al., 2012; Chen et al., 2008; Crockett & Sidell, 1990; G E Hofmann 

et al., 2000; Place et al., 2004; Q. Xu et al., 2008). For these same reasons they have 

recently become a focus for researchers seeking to ascertain the potential ramifications of 

climate change on the species of the Southern Ocean. As global climate change 

accelerates and exerts a strong influence on high latitude regions, the waters of the 

Southern Ocean are likely to see a sustained and relatively rapid increase in temperature 

and pCO2 (Pachauri et al., 2014). With their adaption to the extreme and stable cold of 

the Southern Ocean, (Coppes Petricorena & Somero, 2007) notothenioids may be 

particularly susceptible to environmental perturbations while also finding that there is no 

similar alternative habitats available for migration. 

 A number of studies have identified the loss of an inducible heat shock response 

as one of the unique physiological alterations exhibited by notothenioids (G E Hofmann 

et al., 2000; Huth & Place, 2013, 2015b; Place et al., 2004). In addition, a number of 

physiological studies performed on these fish have broadened our scope of understanding 

with respect to the impacts of heat stress. These studies have found notothenioids to 

exhibit elevated oxidative damage (Carney Almroth et al., 2015), modulated oxygen 

consumption and metabolism (Jayasundara et al., 2013; Esme Robinson & Davison, 

2008), and signs of increased apoptosis (Sleadd et al., 2014) when under short and long 

term heat stress. Genomic based studies have furthered this knowledge by examining 
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changes in gene expression under heat stress and identifying many of the molecular 

pathways involved in the notothenioid cellular stress response (CSR) (Bilyk et al., 2012; 

Buckley & Somero, 2009; Huth & Place, 2013).  

 Recognizing that the cumulative effect of multiple stressors may result in 

significant variation in stress responses (O’Donnell et al., 2009; Rosa & Seibel, 2008; 

Schulte, 2007) and in an attempt to more accurately represent potential future conditions 

of the Southern Ocean, recent studies have focused upon the effects of increasing 

temperature and pCO2. These physiological studies provide a survey of three distinct 

notothenioid species Pagothenia borchgrevinki, Trematomus bernacchii, and 

Trematomus newnesi; indicating that all three species do exhibit some level of 

acclamatory response to the this multi-stressor condition and that the response varies 

between species (Enzor & Place, 2014, 2015; Enzor et al., 2013). In order to assess the 

difference between these three species, recent efforts have been undertaken to analyze the 

transcriptomic response of T. bernacchii (Huth & Place, 2015b) and P. borchgrevinki 

(Huth & Place, 2015a) under these same multi-stressor conditions, with the further goal 

of assessing the physiological plasticity possessed by these species to adapt to a changing 

Southern Ocean. The results of these studies confirm that the adaptive response of these 

notothenioids does vary considerably between species, and this variation may lead to 

impacts on the fitness of some notothenioid species in a changing environment. 

 The focus of the current study is to examine the genomic response of the third 

notothenioid, T. newesi, under the multi-stressor condition of increased temperature and 

pCO2. With little sequence data currently available for T. newnesi this study will greatly 

increase the genomic resources available for this notothenioid species. By gaining further 
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insight into the adaptive response of this notothenioid we aim to not only assess its 

physiological plasticity in light of a changing climate, but also to provide another point of 

reference that can be used to assess the susceptibility of the sub-order Notothenioidie as a 

whole. In this investigation we analyze T. newnesi on multiple levels from transcriptome-

wide to gene specific changes in expression level, to assess its molecular response to 

conditions approximating those of a changing Southern Ocean(Pachauri et al., 2014) 

while providing broad comparisons of multiple notothenioid species under these same 

conditions. 

 

4.2 RESULTS 

Sequencing and quality control 

 Paired end sequencing of 150bp paired-end reads of all 24 individual samples 

derived from a single lane on an Illumina HiSeq 2500 Rapid Run yielded a total of 

309,423,940 paired-end reads of raw sequencing data. Following aggressive quality 

control to eliminate reads of low quality, including any reads orphaned during the 

trimming process, 86.36% of these initial reads remained. The 267,215,937 paired-end 

reads surviving quality control were retained as high quality sequencing data for de novo 

assembly input. 

 Single end sequencing of 100bp paired-end reads of all 24 individual samples on 

two Illumina HiSeq 2500 Rapid Run lanes yielded an average of 24,666,422 single reads 

(s.d. = 2,293,013). Quality control removed single reads that exhibited overall low 

quality, however read quality proved to be excellent with an average of 94.2% of reads 
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surviving quality control screening (s.d. = 0.1%). Following quality control the individual 

samples possessed an average of 23,247,355 single end reads (s.d. = 2,172,968). 

Reference transcriptome assembly, annotation 

 Following a normalized de novo assembly the transcriptome consisted of 728,129 

transcripts and 462,993 ‘genes’ (unique gene products including all related transcripts); 

with a median transcript length of 444bp, mean transcript length of 924bp and N50 of 

1748bp (Figure X). Following transcript compacting to eliminate redundant sequences; 

421,169 transcripts and 315,483 genes remained (median = 413bp, mean = 819bp, N50 = 

1448bp). Lastly, RSEM filtering at FPKM ≥ 1 to remove transcripts with little 

expression, and thus of potentially dubious value, produced a final reference 

transcriptome containing 95,561 transcripts and 53,587 genes; with a median transcript 

length of 893bp, mean transcript length of 1454bp and N50 of 2516bp (Table 1).  

 BLASTx searches yielded hits for 64,940 transcripts, which represented 30,374 

hits on the gene level (Table 2); a success rate of 68.0% at the transcript level and 56.7% 

at the gene level. An analyses of the Top BLAST hit per transcript reveals the high 

degree of similarity between notothenioids and distinctiveness from non-polar species 

with 36,670 of the 64,940 BLAST top-hits to Notothenia coriiceps, which is over 3 times 

as many as the next nearest species, a non-notothenioid fish. GO annotation yielded a 

total of 32,277 transcripts with assigned GO Terms, represented 15,420 GO annotated 

genes (Table 2); or 48.9% of transcripts and 50.8% genes with a BLAST result being GO 

annotated.  
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Sample level differential gene expression analysis 

 Mapping of the 24 SE 100bp trimmed samples to the reference transcriptome 

yielded an average of 23,247,356 reads mapped to the reference transcriptome (s.d. = 

2,127,217) an average mapping rate of 92.2% (s.d. = 0.9%).  

 Applying a 2-fold minimum change in expression to the gene level differential 

expression results uncovered 846 differentially expressed genes between the 7d control 

and the 7d multi-stressor treatments; of these 607 were up-regulated and 239 were down-

regulated. Between the 28d control and multi-stressor treatments there were 949 

differentially expressed genes exhibiting at least 2-fold changes, with 510 up-regulated 

and 439 down-regulated. The 42d time-point exhibited the lowest number of 

differentially expressed genes with a 2-fold or greater change with 451, of which 270 

were up-regulated and 181 were down-regulated.  

 Differential expression patterns at the sample level indicate a general correlation 

in expression profiles between all samples of 71% (Figure 1). The sample correlation 

analysis further confirms the expected strong correlation in expression profiles between 

samples within both the same treatment and time-point with the correlations levels being: 

7d control = 76%, 28d control = 78%, 42d control = 74%, 7d multi-stressor = 81%, 28d 

multi-stressor = 79%, and 42d multi-stressor 77% (Figure 1). Interestingly, despite 

individuals within the same time-point possessing a substantially higher correlation than 

that observed for all samples, we do not see a strong correlation between different time-

points of the multi-stressor treatment with 70% correlation between the 7d/28d time-

points, 72% correlation between the 7d/42d time-points, and 73% between the 28d/42d 

time-points (Figure 1). 
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Gene ontology over-representation 

 Utilizing GOSlim annotation in conjunction with Fisher’s Exact Tests of GO 

over-representation (p ≤ 0.05) to elucidate major cellular trends indicated an evolving 

cellular stress response to the multi-stressor treatment as time progressed. Biological 

processes found to be over-represented in genes up-regulated 2-fold or greater at the 7d 

multi-stressor time-point included tRNA metabolic process (61), cellular amino acid 

metabolic process (106), translation (61), and DNA metabolic process (17); which were 

complemented by a number of molecular functions including nuclease activity (11) and 

ligase activity (83). These processes are indicative of a large scale genomic response to 

the multi-stressor condition with a significant amount of new gene expression occurring. 

Significantly over-represented biological processes in the 7d down-regulated sub-group 

included response to stimuli (28) and protein folding (7), with corresponding molecular 

functions including helicase activity (9) and unfolded protein binding (7). Strikingly, 

these categories are often associated with molecular chaperone activity and proteins 

synthesis/ protein rescue. 

 Biological process significantly over-represented in the 2-fold up-regulated group 

of the multi-stressor condition at 28 days included immune system process (26), 

locomotion (15) and protein maturation (6). In the 28d multi-stressor sub-group both the 

up- and down-regulated subgroups exhibited the over-representation of the biological 

process nucleobase-containing compound catabolic process (9 and 12 respectively) and 

the molecular function nuclease activity (12 in both sub-groups). The 42 day multi-

stressor time-point exhibit the over-representation of the biological processes sulfur 

compound metabolic process (8) and tRNA metabolic process (5) in the 2-fold up-
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regulated sub-group, with the additional over-representation of the molecular function 

methyltransferase activity (8). The down-regulated sub-group exhibited over- 

representation in the biological processes system process (5) and growth (6). 

An inverse heat-shock response 

 As anticipated, T. newnesi does not exhibit an up-regulation of inducible heat 

shock proteins in the 7d multi-stressor treatment. Conversely, we observed a strong and 

consistent down-regulation of a number of heat shock proteins (FDR ≤ 0.05). The 

inducible isoform of the heat shock protein 90 family of chaperones (HSP90α) 

experiences the down-regulation of 5 separate contigs ranging from 2.6-fold down-

regulation to a 4.4-fold down-regulation (Figure 2, Supplementary Table 3). Additionally, 

the heat stress inducible HSP70 also experiences down-regulation in the 7d multi-stressor 

treatment, with two HSP70 isoforms both down-regulated 1.6-fold (Figure 2). This 

response continues into the 28d multi-stressor treatment with 4 HSP90 α isoforms 

continuing to exhibit a strong trend of down-regulation (-3.1-fold to -3.4-fold); and one 

HSP70 isoform down-regulated 1.7-fold (Figure 2). By the 42d multi-stressor treatment 

there is no differential regulation of heat shock proteins. 

The cellular stress response 

 Although acclimation to the multi-stressor treatment for 7d elicits a strong cellular 

response in T. newnesi that involves many of the same pathways previously associated 

with the CSR, analysis of the direction of change in this species revealed a paradoxical 

response. A close analysis of a number of the over-represented GO terms above, in 

addition to several other biological processes including response to stress, cell 

proliferation, and transcription, indicates a number of the pathways associated with the 
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CSR in fish appeared to be strongly down-regulated at the 7d time-point in the multi-

stressor condition (Table 3).  

 In addition to the down-regulation of HSP genes discussed above, other down-

regulated genes associated with a response to stress include a number of PPIs, which 

assist in protein folding and are involved in oxidation related cellular necrosis 

(Supplementary Table 3). We did observe a number genes associated with Go category, 

response to stress, and were differentially up-regulated in at least one time point 

(FDR<0.005). However, the up-regulated genes associated with response to stress 

generally experience less dramatic changes in expression (average fold change = 0.88) 

than the down-regulated genes whose average magnitude of fold-change was over double 

that (Figure 2). 

 Despite the contradictory changes in gene expression of genes associated with the 

GO category response to stress, there was an up-regulation of genes associated with the 

maintenance of homeostasis (4 up-regulated, 0 down-regulated) and immune system 

processes (6 up-regulated and 3 down-regulated), which were more consistent with 

previous observations of gene expression patterns in notothenioid fish. (Table 3, Figure 

2). Of particular note is the up-regulation (+2.0-fold, +1.8-fold) of thioredoxin 

TXNDC12.  

 Especially noteworthy at the 7d multi-stressor time-point is the strong and 

consistent up-regulation of genes related to transcription and translation with 13 genes 

associated with transcription up-regulated (and none down-regulated), and 38 genes 

associated with translation up-regulated (with only 1 down regulated) (Table 3, Figure 3). 

These trends also conflict with previous observations in other notothenioid fish that 
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appear to experience a decline in the early stages of acclimation to stressful conditions 

(Bilyk & Cheng, 2014; Huth & Place, 2015a, 2015b). Several of these genes are involved 

in the initiation of transcription in response to cellular stress including DDIT3 (+4.0-fold, 

+3.4-fold) and IRF3 (+2.5-fold). Relating to translation, a large number of these 

differentially expressed genes encode tRNA ligases, which are up-regulated anywhere 

from +1.6-fold to +4.8-fold (Supplementary Table 4). Additionally there are a number of 

up-regulated genes associated with translation elongation (EEF1A1, +1.7-fold; EEF1E1, 

+1.9-fold and +2.3-fold). 

 Corresponding with an increase in transcription and translation, we see the up-

regulation of genes associated with cell proliferation (6 up-regulated, 2 down-regulated) 

(Table 3, Figure 4). The up-regulated genes include GDF15 (+3.4-fold, +3.5-fold) which 

inhibits macrophage activation and suppress apoptosis(Kadara, Schroeder, Lotan, Pisano, 

& Lotan, 2006) and IGF1 (+2.0-fold) (Supplementary Table 5) which promotes cell 

differentiation and growth (Kiepe, Ciarmatori, Hoeflich, Wolf, & Tönshoff, 2005). 

Conversely, genes associated with cellular death experience relatively muted expression, 

with only 2 significantly up-regulated and 1 significantly down-regulated (Table 3, 

Figure 4, Supplementary Table 5). Again, these results differ substantially from previous 

transcriptomic analyses that found evidence of reduced cell growth and proliferation 

combined with higher levels of apoptosis conditions (Bilyk & Cheng, 2014; Huth & 

Place, 2015a, 2015b). 

 Similar to trends observed in P. borchgrevinki held under the same acclimation 

conditions, we observed little impact on the metabolic pathways of T. newnesi. The 7d 

day multi-stressor treatment had little effect on carbohydrate metabolism, with only 3 
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total differentially expressed genes (1 up-regulated, 2 down-regulated) (Table 3, Figure 

4). Lipid metabolism experiences more significant changes (9 up-regulated, 4 down-

regulated) Table 3, Figure 4); and there is some indication of the increased utilization of 

lipids as an energy source with the up-regulation of endothelial lipase (+2.1-fold) and 

PDC (+1.8-fold), but this trend was not overwhelming, especially when compared to the 

dramatic shifts in energy utilization observed in T. bernacchii when acclimated to the 

same multi-stressor conditions (Huth & Place, 2015b). 

The cellular homeostatic response 

 The 28d multi-stressor treatment demonstrates a significant shift in expression 

from the 7d time-point (Figures 2-4). While pathways related to cellular stress continue to 

exhibit a robust, albeit changing, response; other pathways such as transcription and 

translation undergo significant reductions in differential gene expression. 

 Genes associated with response to stress continue a largely balanced expression 

pattern, with 8 up-regulated and 11 down-regulated (Table 3). However, the specific 

genes that experience differential regulation at this time-point are considerably different 

from those seen in the 7d multi-stressor treatment. At 28d there is a strong down-

regulation of multiple variants of the pro-inflammatory gene, SAMHD1 (-3.8, -3.7, -2.7, 

and -1.6-fold) (Figure 2), in addition to the continued down-regulation of HSP90 

isoforms discussed above. Meanwhile other pro-inflammatory genes are up-regulated for 

the first time including CatB (two variants both at +1.7-fold) and EPX (+1.8-fold) (Figure 

2). An increasing inflammatory response is further supported by the up-regulation of 18 

genes associated with immune system processes, as opposed to only 4 down-regulated 

(Table 3). Among the up-regulated genes are a large number of chemokine and major 
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histocompatibility complex related genes experience consistent and significant up-

regulation from +1.9-fold to +27.3-fold (Figure 2). The homeostatic processes observed 

in 7d acclimated fish, however, have largely dissipated their differential regulation with 

only 1 up-regulated and 1 down-regulated gene (Table 3, Figure 2). 

 Fish acclimated to the 28d multi-stressor time-point also exhibited a substantial 

shift in the direction of the DE genes related to transcription with 10 up-regulated and 7 

down-regulated (Table 3, Figure 3). This decline in protein turnover is further reflected in 

a decrease in the DE genes associated with translation, with only 1 gene up-regulated and 

4 down-regulated (Table 3, Figure 3). Similarly, there is a drop in the differential 

expression of genes associated with cell proliferation with only 3 up-regulated and 1 

down-regulated in the 28d multi-stressor treatment (Table 3, Figure 3). Cell death also 

experiences a similar dearth of differential gene expression (2 up-regulated, 2 down-

regulated) (Table 3, Figure 3). The 28d multi-stressor also exhibits little change in energy 

metabolism with lipid metabolism experiencing only 3 up-regulated and 2 down-

regulated genes, and carbohydrate metabolism experiencing only 6 up-regulated and no 

down-regulated genes (Table 3, Figure 3). 

 By the 42d multi-stressor treatment there is very little differential expression 

observed. Immune system processes, homeostatic processes and response to stress only 

exhibit 3, 0, and 1 differentially expressed genes respectively (Table 3, Figure 2). 

Transcription exhibits only 3 differentially expressed genes, with translation only 

demonstrating 4 (Table 3, Figure 3). This lack of a response is further seen in the 

metabolic pathways with only 2 differentially expressed genes in carbohydrate 
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metabolism and 1 in lipid metabolism; and cell death and proliferation also exhibiting 

only 1 and 2 differentially expressed genes a piece (Table 3, Figure 4). 

 

4.3 DISCUSSION 

 It is clear that T. newnesi possesses a coordinated and evolving response to the 

conditions of the multi-stressor treatment intended to mimic potential future conditions in 

the Southern Ocean. However, the question remains how does this response affect the 

fitness of T. newnesi and what are the long term implications of this response on this 

species’ adaptability to a changing climate? 

 Past research has consistently supported the finding that notothenioids lack an 

inducible heat shock response when exposed to heat stress (Buckley et al., 2004; G E 

Hofmann et al., 2000; Huth & Place, 2013). It has been surmised that the lack of an 

inducible heat shock response in notothenioids is a result of the need to constantly 

express these genes to counter the denaturing effects of persistent cold (Place & 

Hofmann, 2005; Place et al., 2004). Our recent studies involving the closely related 

species T. bernacchii and P. borchgrevinki have further confirmed that this finding is 

supported under the multi-stressor conditions employed in the current study (Huth & 

Place, 2015a, 2015b). While the current findings do support that idea that HSPs are not 

up-regulated during stressor conditions, we do find a consistent down-regulation of 

multiple HSP90 and HSP70 related genes in the 7d and 28 multi-stressor treatments, 

which was not found in our previous efforts with T. bernacchii and P. borchgrevinki 

under identical conditions(Huth & Place, 2015a, 2015b). However, other research into P. 

borchgrevinki under heat-stress alone observed a wide-spread and consistent down-



 

124 
 

regulation of HSPs at 4 days(Bilyk & Cheng, 2014). This decrease in HSP expression has 

been postulated as an indication that elevated temperatures may provide more favorable 

protein folding conditions, potentially increasing the stability of some proteins and thus 

reducing the need for chaperoning activity (Bilyk & Cheng, 2014; Huth & Place, 2013). 

Increased protein folding efficiency would also result in reduced rates of protein turn-

over and potentially explain the slow-down in protein synthesis previously observed in 

notothenioid fish (Bilyk & Cheng, 2014; Haschemeyer & Matthews, 1983; Haschemeyer, 

1982). It is possible that T. newnesi is experiencing a decrease in protein stress with 

warming temperatures and thus does not need to persistently express these HSPs. If this 

were true it would seem to indicate that notothenioids in general remain capable of 

modulating the expression of HSPs. 

 However, we would expect that this change would persist throughout all time-

points within the multi-stressor treatment, which it does not. Furthermore, the apparent 

increase in transcription/translation observed in T. newnesi is at odds with the concept of 

reduced protein turn-over as a consequence of more stable protein folding conditions. 

Consequently, an alternative explanation may be that HSP90 and HSP70 are being down-

regulated in order to allow apoptosis to occur more readily, as HSPs have been 

demonstrated to inhibit apoptotic pathways (Kennedy, Jäger, Mosser, & Samali, 2014; 

Sreedhar & Csermely, 2004). Once cellular remodeling is largely completed by the 42 

time-point, these HSPs return to normal expression levels. Furthermore, T. newnesi 

displayed extended bouts of oxidative damage under these same acclimation conditions. 

Previous research under these same conditions has indicated an increase in protein 

carbonyl concentrations in T. newnesi at the 7d time-point, but not to the same degree as 
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P. borchgrevinki or T. bernacchii (Enzor & Place, 2014). Moreover, the protein carbonyl 

levels were shown to decrease less rapidly over time in T. newnesi as compared to the 

other two notothenioids studied (Enzor & Place, 2014) indicating that protein damage 

continues to accumulate 31. The accumulation of oxidatively damaged protein may play a 

role in maintaining the elevated rates of transcription and translation observed throughout 

day 28 in these fish. and suggests a possible explanation for the increased continued 

oxidative damage is prevalent. The most indicative response to oxidative damage found 

at 7 days in the current study is the up-regulation of TXN. 

 Apart from the differential expression in HSP related genes, T. newnesi 

demonstrates a muted initial stress response at the 7d time-point to the multi-stressor 

treatment. There are a handful of up-regulated genes related to stress and inflammation 

including chemokines and MHC genes, but the initial cellular stress response in these 

molecular pathways does not demonstrate the robust nature previously seen in T. 

bernacchii under these same conditions at the 7d time-point 13. By the 28d multi-stressor 

time-point we observe a robust cellular stress response in T. newnesi involving a large 

number of chemokine and major histocompatibility complex related genes, in 

conjunction with CatB. This response then diminishes rapidly at 42d time-point, 

potentially indicating the transition of these pathways into a more permanent CHR state. 

Both the peak CSR, and the apparent transition to the long-term acclimation state appear 

to be delayed in T. newnesi compared to other notothenioid species 13,25. It may be that T. 

newnesi is initially over-whelmed by the multi-stressor condition and cannot mount a 

more significant response, or alternatively that cellular resources are being allocated to 

other processes as part of an initial response. 
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 While the initial cellular stress response demonstrated by T. newnesi is not nearly 

as robust as some other notothenioids, T. newnesi does exhibit a broad and relatively 

sustained up-regulation of both transcriptional and translational gene products with the 

most marked response in the 7d multi-stressor treatment. The analysis of over-

represented gene ontology terms supports this idea of large scale cellular remodeling with 

the over-expression of transcription/translation-related GO terms such as tRNA metabolic 

process, cellular amino acid metabolic process, translation, and DNA metabolic process 

in the up-regulated sub-group. Previous studies of notothenioids have not established a 

clear consensus on the effect of stressors on transcriptional and translational activity; P. 

borchgrevinki has been demonstrated to down-regulate genes associated with 

transcription and translation after 4 days of heat stress alone in liver tissue (Bilyk & 

Cheng, 2014), whereas T. bernacchii has been shown up-regulate genes associated with 

transcription after 4 hours of heat stress in gill tissue (Buckley & Somero, 2009). These 

studies and others indicate that these results are not only time and species dependent, they 

are also tissue specific (Buckley et al., 2006; Prunet, Cairns, Winberg, & Pottinger, 

2008). Our previous efforts involving T. bernacchii and P. borchgrevinki under the same 

multi-stressor conditions and in the same tissue of the current study have indicated that T. 

bernacchii demonstrates a sizable increase in genes related to transcription and 

translation at 7 days (Huth & Place, 2015b), whereas P. borchgrevinki does not (Huth & 

Place, 2015a). These results seem to indicate that the genus Trematomus initiates a much 

more robust CSR that involves a considerable amount of cellular remodeling, whereas the 

genus Pagothenia does not. 
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 Two peculiar aspects of the CSR/CHR response of T. newnesi is the dearth of 

differential expression in carbohydrate or lipid metabolic processes and in genes related 

to cell death and proliferation, that contrasts with the response of other closely related 

notothenioids (Bilyk & Cheng, 2014; Buckley & Somero, 2009; Huth & Place, 2015a, 

2015b). A lack of metabolic adaptation to the multi-stressor conditions does however 

correlate with other findings of T. newnesi under identical conditions, where T. newnesi 

unlike other notothenioids continued to experience increased resting metabolic rates 

throughout the multi-stressor treatment that did not return to basal levels (Enzor et al., 

2013). It may be that T. newnesi either modifies its metabolic capacity more slowly than 

other notothenioids, or perhaps lacks the capacity to do so altogether, requiring continued 

increased levels of oxygen consumption to offset the energy expenditures necessary to 

cope with the multi-stressor condition. Additionally, the lack of differential expression in 

cell death and proliferation indicates that the remodeling response in T. newnesi may not 

be as robust and dramatic as other notothenioids, with almost no indication of cell 

proliferation throughout all time-periods. While other notothenioids may retain the 

capability of remodeling gill tissues to cope with the challenges of the multi-stressor 

environment as has been seen in other teleosts (Nilsson, 2007), T. newnesi may not 

possess the energy reserves for large scale remodeling.  

 Our findings indicate that T. newnesi does exhibit a coordinated response to the 

multi-stressor conditions intended to mimic future changes to the Southern Ocean. The 

initial CSR is relatively robust and provides evidence of some cellular remodeling in an 

attempt to cope with the stressor conditions, however not at the same scale observed in 

closely related species. However, the lack of significant changes in metabolism or 
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renewal of damaged tissues through cell proliferation may have important long-term 

implications for T. newnesi’s ability to cope with permanent changes in its environment. 

These aspects raise questions about T. newnesi’s fitness under changing conditions over 

an extended period of time and may reveal it to be one of the more susceptible 

notothenioids to global climate change impacts. With that said , however, this study 

focused upon the gill tissue of adult T. newnesi over a relatively short period of time due 

to experimental constraints. In order to obtain a firmer grasp of T. newnesi’s ability to 

adapt to a changing Southern Ocean further studies should be conducted involving 

additional tissue types over longer periods of time, as well as other phases of the 

reproductive cycle. The information obtained from such studies when combined with the 

present findings would likely present a much clearer picture of T. newnesi’s role in the 

ecosystem of a changing Southern Ocean. 

 

4.4 METHODS 

Collection of fish 

 Specimens of T. newnesi were collected in McMurdo Sound, Antarctica from 

September through December, 2012. Fish were caught using hook and line through 10-

inch holes drilled through the sea ice and transported back to McMurdo Station in aerated 

coolers where they were housed in a flow-through aquaria maintained at ambient 

seawater temperature (-1.5°C). Fish were then tank-acclimated under ambient conditions 

for one week prior to being placed in experimental tanks. All procedures were conducted 

in accordance with the Animal Welfare Act and were approved by the University of 
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South Carolina Institutional Animal Care and Use Committee (ACUP protocol # 

100377). 

Experimental Design 

 We used four, 1240 L experimental tanks to assess the combined effects of 

elevated temperature and pCO2 on T. newnesi. Our two experimental treatments consisted 

of a control tank which was held near ambient conditions (-1°C and 430 μatm) and a high 

temperature + high pCO2 treatment (+4°C/ 1000 μatm). Fish were placed in experimental 

tanks and acclimated for a total of 42 days. Five fish per treatment were removed at 7d, 

28d, and 42d time-points, after which fish were sacrificed and gill tissues were collected 

and immediately flash-frozen in liquid nitrogen. Although we recognize a fully replicated 

experimental design is ideal to exclude tank effects as a possible confounding factor, the 

constraints of working in Antarctica prevented us from using this approach. However, our 

previous analyses show no tank effect when treatments were alternated between tanks 

across multiple seasons (Enzor & Place, 2014; Enzor et al., 2013). 

Manipulation of seawater conditions 

 Temperature and pCO2 levels were manipulated within the experimental 

treatment tanks using a pCO2 generation system first described by Fangue et al. (2010) 

(Fangue et al., 2010) and adapted for use with large-scale applications and combined with 

thermostated titanium heaters (Process Technology, Brookfield CT, USA; Enzor et al. 

(2013) (Enzor et al., 2013) ). Atmospheric air was pumped through drying columns 

(filled with drierite) to remove moisture, and air was scrubbed of CO2 using columns 

filled with Sodasorb. Pure CO2 and CO2-free air were then blended using digital mass 

flow controllers and bubbled into header tanks that were continuously replenished with 



 

130 
 

ambient seawater using venturri injectors, which in turn fed into experimental treatment 

tanks.  

 Temperature, pH (total scale), salinity, total alkalinity (TA) and oxygen saturation 

were measured daily from both incoming seawater as well as experimental treatment 

tanks. For pCO2 analysis, we followed the SOP as described in the Best Practices Guide 

(Jean-Pierre Gattuso, Kunshan Gao, Kitack Lee, 2010) for the spectrophotometric 

determination of pH using m-cresol purple and measurement of total alkalinity via acid 

titration using a computer-controlled T50 Titrator (Mettler Toledo, Columbus, OH, USA) 

. Temperature was measured with a calibrated digital thermocouple (Omega Engineering 

Inc., Stamford, CT, USA) and salinity was measured using a YSI 3100 Conductivity 

meter (Yellow Springs, OH, USA). CO2 calc (Robbins et al., 2010), using the constants 

of Mehrbach et al. (1973) (Mehrbach et al., 1973) as refit by Dickson & Millero (1987) 

(Dickson & Millero, 1987), was used to calculate all other carbonate parameters. Oxygen 

saturation was recorded using a galvanic oxygen probe (Loligo Systems, Denmark). 

Mean values (± s.d.) of temperature (°C) and pCO2 (µatm) over the course of the 

experiment were first reported in Enzor and Place (2014) (Enzor & Place, 2014). 

Additionally, treatment tanks were sampled daily for the presence of ammonia, nitrite and 

nitrates, with no significant increase in waste products noted over the course of the 

experiment (data not shown). 

Tissue collection and RNA extraction 

 To obtain individual gill-specific expression profiles, we separately indexed and 

sequenced RNA samples from gill tissue that had been collected from fish acclimated to 

the two experimental treatments described above (n=5 fish per treatment) for 7 days, 28 
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days and 42 days. Immediately after euthanizing the fish, tissues were excised in a -2 °C 

environmental chamber, flash frozen in liquid nitrogen, and shipped back to our home 

institution on dry ice where they were stored at -80 °C until used. Total RNA from 

approximately 100 mg of frozen tissue was extracted using TRIzol (Invitrogen) following 

the manufacturer’s recommendations. The RNA was further cleaned by re-suspending in 

0.1 ml of RNase/ DNase-free water and adding 0.3 ml of 6 M guanidine HCl and 0.2 ml 

of 100% ethylalcohol (EtOH). The entire volume was loaded onto a spin column 

(Ambion) and centrifuged for 1 min at 12,000 × g at 4 °C. Flow-through was discarded, 

and filters were washed twice with 0.2 ml 80% EtOH. RNA was eluted off of the filters 

twice with 0.1 ml of DEPC-treated water. RNA was precipitated by the addition of 0.1 

vol of 3 M sodium acetate (pH 5.0) and 2.5 vol of 100% EtOH, mixed by inversion of 

tubes and placed at -80 °C for 1 h. After this period, tubes were centrifuged at 12,000 × g 

for 20 min at 4° C. Pellets were washed twice with 80% EtOH and re-suspended in 30 μl 

of RNase/ DNase-free water. Lastly, RNA was DNase treated at 30 °C for 10 min.  

 Total RNA from n=5 fish within an acclimation treatment was submitted to the 

Vaccine and Gene Therapy Institute (VGTI) Florida for quality assessment and 

determination of specific concentration using an Agilent 2100 BioAnalyzer. From the 

original samples, the 4 highest quality replicates from each treatment and time point were 

selected for cluster generation using the Illumina® TruSeq RNA Sample Prep v2 Hs 

Protocol and sequencing via an Illumina® HiSeq 2500 Rapid Run initialized for both 

paired-end 150bp reads and single-end 100bp reads. 
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Quality control 

 Raw reads from each of the twenty-three samples were processed using 

Trimmomatic (version Trimmomatic-0.33) (Bolger et al., 2014). For both paired-end and 

single-end reads Illumina® TruSeq RNA Sample Prep v2 HS adapters were removed as 

well as any bases on the end of the reads with a PHRED33 score of < 20 or any portion of 

the read that did not average at least a PHRED33 score of > 20 across a minimum span of 

4bp. Paired-end reads with a length < 100 were removed, as well as any reads that were 

orphaned during the quality control process; whereas single-end reads with a length < 75 

were removed (paired-end Trimmomatic parameter input: VGTI_Adapters_TruSeq2-

PEMultiplex.fa:2:30:10 LEADING:20 TRAILING:20 SLIDINGWINDOW:4:20 

MINLEN:100; single-end Trimmomatic parameter input: VGTI_Adapters_TruSeq2-

PEMultiplex.fa:2:30:10 LEADING:20 TRAILING:20 SLIDINGWINDOW:4:20 

MINLEN:75). 

Reference transcriptome assembly, annotation and comparison 

 All paired-end reads surviving quality control were used as input in the Trinity de 

novo assembly utility (version trinityrnaseq-2.0.3) (Grabherr et al., 2011). The Trinity 

package efficiently recovers full-length transcripts and spliced isoforms across a range of 

expression levels, with less artificially constructed transcripts than other assembly 

utilities (Zhao et al., 2011). Assembly was conducted utilizing the Trinity’s default 

parameters with read normalization (N=50). Following assembly raw transcripts were 

compacted using CD-HIT-EST (version cd-hit-v4.6.1-2012-08-27) (Fu et al., 2012) with 

a sequence similarity requirement of 95% to eliminate redundant transcript sequences. 

Then the single ends reads were mapped to the compacted transcripts utilizing Bowtie2 



 

133 
 

(Langmead & Salzberg, 2012) with default parameters; after which RSEM (Li & Dewey, 

2011) was conducted to generate calculated FPKM values for each compacted transcript. 

Compacted transcripts were then filtered with only those possessing FPKM ≥ 1 being 

retained for the final reference transcriptome. 

 Transcripts from the final reference transcriptome were used as query sequences 

in BLASTx (version: ncbi-blast-2.2.25+) (Camacho et al., 2009) searches with a 

minimum confidence value of 1E-6 required for annotation against the NCBI nr (non-

redundant) database (version May 2015). BLASTx was implemented in a massively 

parallel manner utilizing the resources of the Data Intensive Academic Grid (DIAG) 

(“Data Intensive Academic Grid,” n.d.). After BLASTx results were obtained, the 

transcript sequences and the corresponding BLASTx results were input into the 

BLAST2GO utility (Conesa et al., 2005) for further annotation including GO Mapping, 

GO Annotation, and Enzyme Code Annotation(Jones et al., 2014). GO Slim (Gene et al., 

2014) annotations were further generated for broad transcriptome wide comparisons and 

pathway analyses.  

Differential Gene Expression Analysis 

 Using raw mapping counts from Bowtie2 (Langmead & Salzberg, 2012), RNA-

Seq by Expectation-Maximization (“RSEM” version 1.2.18) (Li & Dewey, 2011) 

analyses were conducted to generate estimated read-count (count) and fragments per 

kilobase million (FPKM) counts for each sample at the transcript and gene level. The 

Trinity pipeline (Trinity version trinityrnaseq-2.0.3) (Broad Institute and the Hebrew 

University of Jerusalem, 2014) was used to aggregate these counts into master matrices 

for import into the R statistical package (R Core Team, 2013). Before import, the samples 
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were grouped by time-point and treatment similarity to conduct pairwise analyses of the 

effect of the multi-stressor treatment over time as compared to the control. Empirical 

analysis of digital gene expression data in R (“edgeR” version 3.4.2) was implemented to 

conduct differential gene expression analyses (M. D. Robinson et al., 2010); dispersion 

values were calculated using the replicate groups; and exact tests utilizing a negative 

binomial distribution with a cutoff false discovery rate of 0.05 were used to identify 

differentially expressed transcripts and genes.  

 A sample-level differential expression heat map was generated from the 

differential gene expression analyses resulting from edgeR using the Trinity pipeline. 

Within the BLAST2GO graphical interface package (Conesa et al., 2005) Fisher's Exact 

tests (FDR ≤ 0.05) were conducted for differentially expressed transcripts of the multi-

stressor treatment to identify over-expressed gene ontology terms within the up- and 

down- regulated transcripts within each treatment group in general. Using custom Python 

scripts GO Slim, BLAST annotation and expression data files were combined, and GO 

categories and genes of interest were extracted for further analysis. 
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Table 4.1: Trematomus newnesi transcriptome assembly statistics: Statistics for the 

filtered de novo assembly were computed on the transcript and gene level. The # of 

sequences of the transcript level represent all surviving contiguous sequences, the # of 

sequences on the gene level represent the number of putative genes surviving based upon 

groupings of homologous transcripts. 

 

 Transcript Level Gene Level 

# Sequences 95,561 53,587 

N50 (bp) 2,516 2,778 

Median Length (bp) 893 734 

Mean Length (bp) 1,454 1,434 

Total Transcriptome Length 

(bp) 

138,966,447 76,875,859 

 

 

 

Table 4.2: Trematomus newnesi transcriptome annotation statistics: Statistics for the 

filtered de novo assembly were computed on the transcript and gene level. The # of 

sequences of the transcript level represent all surviving contiguous sequences, the # of 

sequences on the gene level represent the number of putative genes surviving based upon 

groupings of homologous transcripts. 

 

 

 

Transcript 

Level 

Gene 

Level 

Total 95,561 53,587 

GO Annotation 32,277 15,420 

BLAST Only 33,677 14,953 

No Annotation 

Result 

29,607 23,213 
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Table 4.3: Pathway up- and down-regulation at each time-point: The total number of 

genes expressed in the up- and down-regulated sub-groups for each multi-stressor time 

point (FDR ≤ 0.05) including genes associated with the gene ontology terms 

carbohydrate metabolic process (GO:0005975), lipid metabolic process (GO:0006629), 

cell death (GO:0008219), cell proliferation (GO:0008283), response to stress 

(GO:0006950), immune system process (GO:0002376), homeostatic process 

(GO:0042592), transcription (GO:0006351), translation (GO:0006412), and genes with 

BLAST results including heat shock related proteins. Total indicates the total number of 

genes of that particular category found in the reference transcriptome library as a whole.  

 

7d Multi-

stressor 

28d Multi-

stressor 

42d Multi-

stressor 

Total Up Down Up Down Up Down 

Carbohydrate Metabolic 

Process 466 1 2 6 0 1 1 

Lipid Metabolic Process 501 9 4 3 2 1 0 

Cell Death 254 1 2 2 2 0 2 

Cell Proliferation 174 6 2 3 1 1 0 

Response to Stress 543 10 10 8 11 0 1 

Immune System Process 364 6 3 18 4 2 1 

Homeostatic Process 262 4 0 1 1 0 0 

Transcription 599 13 0 10 7 2 1 

Translation 480 38 1 4 0 4 0 

Heat Shock Related 57 0 8 0 5 0 0 
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Figure 4.1 – Sample level gene-expression correlation matrix: The correlation matrix 

demonstrates the level of transcriptome wide gene expression correlation from 0-1, with 

0 indicating no correlation and 1 indicating an identical expression profile. The current 

correlation matrix is indexed between 0.5 and 0.9 with black representing a correlation of 

0.5 and yellow representing a correlation of 0.9. Cluster dendrograms are provided to 

demonstrate the relationships between the expression profiles of each individual sample. 
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Figure 4.2 – The stress response heatmap: The heatmap displays 

all differentially regulated genes (FDR ≤ 0.05) within the GO 

categories response to stress (GO:0006950), immune system 

process (GO:0002376), and homeostatic process (GO:0042592) for 

each multi-stressor time-point as compared to the control (7 days, 

28 days, and 42 days). The fold change is log2 scaled with blue 

representing down-regulation, black indicating no significant 

regulation, and yellow representing up-regulation. Any changes 

with an absolute fold change greater than log2(2) (abs 4X) are 

represented as the maximum. The gene symbol is included for each 

gene with a number within parentheses indicating an isoform of 

that gene. Each gene symbol also includes an additional symbol 

associating that gene with a GO category in the following manner: 

response to stress = “X”, immune system process = “+”, and 

homeostatic process = “~”.   
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Figure 4.3 – Transcription and translation heatmap: The heatmap 

displays all differentially regulated genes (FDR ≤ 0.05) within the 

GO categories transcription (GO:0006351) and translation 

(GO:0006412) for each multi-stressor time-point as compared to 

the control (7 days, 28 days, and 42 days). The fold change is log2 

scaled with blue representing down-regulation, black indicating no 

significant regulation, and yellow representing up-regulation. Any 

changes with an absolute fold change greater than log2(2) (abs 4X) 

are represented as the maximum. The gene symbol is included for 

each gene with a number within parentheses indicating an isoform 

of that gene. Each gene symbol also includes an additional symbol 

associating that gene with a GO category in the following manner: 

transcription = “-” and translation = “+”.  
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Figure 4.4 – Metabolism, proliferation and death heatmap: The 

heatmap displays all differentially regulated genes (FDR ≤ 0.05) 

within the GO categories carbohydrate metabolic process 

(GO:0005975), lipid metabolic process (GO:0006629), cell 

proliferation (GO:0008283) cell death (GO:0008219), for each 

multi-stressor time-point as compared to the control (7 days, 28 

days, and 42 days). The fold change is log2 scaled with blue 

representing down-regulation, black indicating no significant 

regulation, and yellow representing up-regulation. Any changes 

with an absolute fold change greater than log2(2) (abs 4X) are 

represented as the maximum. The gene symbol is included for each 

gene with a number within parentheses indicating an isoform of 

that gene. Each gene symbol also includes an additional symbol 

associating that gene with a GO category in the following manner: 

carbohydrate metabolic process = “#”, lipid metabolic process = 

“=”, cell proliferation = “+”, and cell death = “X”.  
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CHAPTER 5 

 

A BRIEF COMPARATIVE ANALYSIS OF THE DIFFERENTIAL GENE 

EXPRESSION OF T. BERNACCHII, P. BORGREVINKI AND T. NEWNESI UNDER 

THE MULTI-STRESSOR CONDITION. 

  



 

142 
 

5.1 CONCLUSORY REMARKS 

 The Notothenioid species investigated throughout this research all demonstrate 

some form of cellular stress and cellular homeostatic response when exposed to a multi-

stressor condition of increased temperature and pCO2. Yet despite sharing a common 

phylogenetic lineage in an environment that necessitates the adaptation to extreme and 

stable cold (Chen et al., 2008; J. T. Eastman, 2005; J. Eastman, 1991, 1993; Ritchie et al., 

1997), we observed considerable variation between the response of these three species. 

These variations are exhibited not only in the timing, duration and intensity of response; 

but also in the biological pathways that drive this response.  

 These responses are employed as representative of the physiological plasticity of 

these species when confronting a changing Southern Ocean, and thus provide insight into 

the adaptive ability of these species to changing conditions. The differential response of a 

particular species may indicate the impact of climate change on that species energetic 

costs, growth, and reproduction. To more comprehensively understand the long term 

ramifications of the conditions that notothenioids will face as climate change continues 

(Pachauri et al., 2014) the scope of tissues sampled, the life stages of samples collected, 

and the duration of exposure to the multi-stressor conditions will all need to be expanded 

and further analyzed. 

 Bearing in mind these limitations, the responses of the three notothenioids 

studied: Trematomus bernacchii, Pagothenia borchgrevinki, and Trematomus newnesi, 

are compared below to assess the variation in the cellular stress and homeostatic 

responses between these fish and how it may affect their success in a changing Southern 

Ocean. 
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5.2 OVERALL DIFFERENTIAL GENE EXPRESSION 

 An analysis of the overall differential expression at each time-point demonstrates 

drastic differences in the timing of differential expression between these species (Fig. 

5.1). T. bernacchii and P. borchgrevinki demonstrate a robust initial response at 7 days; 

of the total 43,094 genes within the T. bernacchii reference transcriptome, 924 are 

differentially regulated (753 up- and 171 down-regulated; FDR ≤ 0.05, FC ≥ 2); and of 

the 46,176 genes within the P. borchgrevinki transcriptome 923 genes are differentially 

regulated (665 up- and 258 down-regulated; FDR ≤ 0.05, FC ≥ 2). On the other hand, T. 

newnesi exhibits 846 differentially expressed genes (607 up- and 239 down-regulated; 

FDR ≤ 0.05, FC ≥ 2) within its larger transcriptomic library of 53,587 genes. 

 However, the most drastic differences are seen after the initial cellular stress 

response as the transition to a long term cellular homeostatic response begins (Fig. 5.1). 

T. bernacchii exhibits almost no further response to the multi-stressor condition at 28 

days and 56 days, with only 13 and 27 differentially expressed genes total found at each 

time-point respectively. This is in stark contrast to T. newnesi which experiences an 

increase in differential expression at 28 days (949 differentially expressed genes; 510 up- 

and 439 down-regulated; FDR ≤ 0.05, FC ≥ 2) that remains robust into the 42 day time-

point days (451 differentially expressed genes; 270 up- and 181 down-regulated; FDR ≤ 

0.05, FC ≥ 2). P. borchgrevinki demonstrates a decrease in differential expression at 28 

days (372 differentially expressed genes; 221 up- and 151 down-regulated; FDR ≤ 0.05, 

FC ≥ 2), that then increases at 56 days (606 differentially expressed genes; 220 up- and 

386 down-regulated; FDR ≤ 0.05, FC ≥ 2). To further grasp the significance of these 
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variations in differential expression a more detailed pathway based analysis at each time-

point is conducted below. 

 

5.3 THE INTIAL CELLULAR STRESS RESPONSE  

 All three species demonstrate a relatively robust differential gene expression 

response at 7 days to the multi-stressor treatment, but a closer examination reveals 

significant deviations in the pathways involved in this response (Fig. 5.2). P. 

borchgrevinki demonstrates a very robust up-regulation of immune system processes (28 

genes, FDR ≤ 0.05, FC ≥ 2), with T. bernacchii not far behind (18 genes, FDR ≤ 0.05, FC 

≥ 2); whereas as T. newnesi has a much more diminished response (6 genes, FDR ≤ 0.05, 

FC ≥ 2) (Fig. 5.2). The strong up-regulation of genes associated with the immune system 

is a common characteristic of the teleost stress response (Wendelaar Bonga, 1997). It is 

possible that this up-regulation of the immune system is to compensate for the overall 

lack of an inducible heat shock response in notothenioids (Place & Hofmann, 2005).  

 By lacking a robust heat shock response bernacchii (Buckley et al., 2004; G E 

Hofmann et al., 2000; Huth & Place, 2013), the up-regulation of immune system 

processes in conjunction with up-regulation of genes associated with response to stress 

may represent the primary mechanisms of the notothenioid cellular stress response. 

Among these species T. bernacchii exhibits the strongest up-regulation genes associated 

with response to stress (21 genes, FDR ≤ 0.05, FC ≥ 2) whereas P. borchgrevinki and T. 

newnesi both up-regulate 10 such genes. In that frame of mind P. borgrevinki and T. 

bernacchii demonstrate a robust capability to response to the multi-stressor condition, 

whereas T. newnesi does not (Fig. 5.2). This is further reinforced by the number of genes 
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associated with cell death that are up-regulated in P. borchgrevinki (10) and T. bernacchii 

(14) which is in stark contrast to T. newnesi (6) (Fig 5.2). Stressor conditions, such as the 

multi-stressor condition utilized in this study, are known to induce large scale cellular 

reorganization of gill tissue in teleosts via apoptosis (Nilsson, 2007); as such the cellular 

death observed may be indicative of reorganizational efforts. 

 

5.4 A RESPONSE IN TRANSITION 

 Following the initial cellular stress response is a transition to a long term cellular 

homeostatic response (Kültz, 2005). The most immediately striking discovery at 28 days 

is that T. bernacchii demonstrates no differential expression in any of the six pathways 

analyzed, potentially indicating that this species has already reached a state of 

homeostasis under the multi-stressor conditions and requires no further differential 

regulation. T. newnesi appears to be in the midst of its cellular stress response with strong 

differential regulation of genes associated with response to stress (19 differentially 

expressed genes; 8 up- and 11 down-regulated; FDR ≤ 0.05, FC ≥ 2), immune system 

process (19 differentially expressed genes; 8 up- and 11 down-regulated; FDR ≤ 0.05, FC 

≥ 2), cell death (4 differentially expressed genes; 2 up- and 2 down-regulated; FDR ≤ 

0.05, FC ≥ 2), and cell growth (4 differentially expressed genes; 3 up- and 1 down-

regulated; FDR ≤ 0.05, FC ≥ 2). Meanwhile, P. borchgrevinki is still up-regulating genes 

associated with response to stress (9) immune system process (9), and cell death (4); 

albeit at a lower level than at 7 days, which may be indicative of a winding down of the 

cellular stress response in preparation to transition to a more stable cellular homeostatic 

response. 
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5.5 THE CELLULAR HOMEOSTATIC RESPONSE 

 By the last time-point, 56 days for P. borchgrevinki and T. bernacchii, and 42 

days for T. newnesi; the shift to a longer term state of cellular homeostasis is well 

underway. T bernacchii exhibits a slight amount of differential expression, but at levels 

that continue to indicate that this species has likely acclimated to the multi-stressor 

condition (Fig. 5.4). This supports prior research that found that under these same 

conditions by the 56 day time-point T. bernacchii experienced a significant decrease in 

protein damage (Enzor & Place, 2014). While subtle changes in biological pathways and 

metabolism may influence T. bernacchii’s success over many generations, this fish 

exhibits an adaptive response that may well be superior to other notothenioid species and 

indicating that T. bernacchii may potentially benefit from slightly warmer temperatures. 

 In contrast to T. bernacchii, P. borchgrevinki continues to exhibit a robust 

response to the multi-stressor condition even at 56 days, although a shift from the up-

regulation of genes associated with response to stress (2) and immune system processes 

(4) to the up-regulation of genes associated with metabolism (lipid 6, carbohydrate 4) has 

begun (Fig. 5.4). Furthermore, relatively substantial gene regulation is occurring in 

pathways associated with cell death and cell proliferation (Fig. 5.4). As a degree of 

acclimation to heat stressor conditions has been observed in this species (Bilyk et al., 

2012; Enzor et al., 2013; Franklin et al., 2007; Esme Robinson & Davison, 2008), we 

may be observing P. borchgrevinki shifting is metabolism while continuing a robust 

cellular remodeling response in order to acclimate to the multi-stressor condition. 

 Of the three notothenioid species T. newnesi may be the least capable of 

acclimating to the multi-stressor condition and thus possible future conditions in the 
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Southern Ocean. T. newnesi has previously been shown to the be the only fish among the 

three studied that still exhibits an increased resting metabolic rate over a longer time 

frame (Enzor et al., 2013), which may have significant effects on its fitness. Throughout 

this study T. newnesi has exhibited the most meager response and maintained that general 

level of response into the 42 day time-point. Furthermore, unlike T. bernacchii who 

exhibited a very robust initial response that rapidly diminishes, it appears less likely that 

the diminished response in T. newnesi is not a return to cellular homeostasis but rather 

evidence that T. newnesi is overwhelmed by the multi-stressor condition and unable to 

adequately respond. 

 It is clear that these three species T. bernacchii, P. borchgrevinki and T. newnesi 

exhibits variable responses to the multi-stressor condition of increased temperature and 

pCO2 intended to simulate predicted future conditions in the Southern Ocean. The efforts 

herein have provided a basis from which others may continue this investigation to better 

determine how the fauna of the Southern Ocean will change as we confront global 

climate change. 
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Figure 5.1. The total number of differentially expressed genes (FDR ≤ 0.05, fold 

change ≥ 2) for T. bernacchii (black), P. borchgrevinki (dark grey), and T. 

newnesi (light grey) in the multi-stressor treatment as compared to the control at 

each time-point 7 days, 28 days and 42/56 days for T. newnesi and T. 

bernacchii/P. borchgrevinki, respectively. Bars above the x-axis indicate up-

regulated genes; bars below the x-axis indicate down-regulated genes. 
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Figure 5.2. The total number of differentially expressed genes (FDR ≤ 0.05, fold 

change ≥ 2) for T. bernacchii, P. borchgrevinki, and T. newnesi in the multi-

stressor treatment as compared to the control at 7 days for the biological 

processes: carbohydrate metabolism (blue), lipid metabolism (light blue), cell 

death (dark green), cell proliferation (light green), response to stress (red), and 

immune system process (light red). Bars above the x-axis indicate up-regulated 

genes; bars below the x-axis indicate down-regulated genes. 
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Figure 5.3. The total number of differentially expressed genes (FDR ≤ 0.05, fold 

change ≥ 2) for T. bernacchii, P. borchgrevinki, and T. newnesi in the multi-

stressor treatment as compared to the control at 28 days for the biological 

processes: carbohydrate metabolism (blue), lipid metabolism (light blue), cell 

death (dark green), cell proliferation (light green), response to stress (red), and 

immune system process (light red). Bars above the x-axis indicate up-regulated 

genes; bars below the x-axis indicate down-regulated genes. 
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Figure 5.4. The total number of differentially expressed genes (FDR ≤ 0.05, fold 

change ≥ 2) for T. bernacchii, P. borchgrevinki, and T. newnesi in the multi-

stressor treatment as compared to the control at 42 (T. newnesi) or 56 (T. 

bernacchii and P. borchgrevinki) days for the biological processes: carbohydrate 

metabolism (blue), lipid metabolism (light blue), cell death (dark green), cell 

proliferation (light green), response to stress (red), and immune system process 

(light red). Bars above the x-axis indicate up-regulated genes; bars below the x-

axis indicate down-regulated genes. 
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