[Threshold]: Understanding Noise Through Play

Cecil Decker
University of South Carolina

Follow this and additional works at: http://scholarcommons.sc.edu/etd

Recommended Citation

This Open Access Thesis is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.
[THRESHOLD]: UNDERSTANDING NOISE THROUGH PLAY

by

Cecil Decker

Bachelor of Media Arts
University of South Carolina, 2010

Submitted in Partial Fulfillment of the Requirements
For the Degree of Master of Arts in
Media Arts
College of Arts and Sciences
University of South Carolina
2013

Accepted by:
Simon Tarr, Director of Thesis
Heidi Rae Cooley, Reader
Mark Cooper, Reader
Lacy Ford, Vice Provost and Dean of Graduate Studies
ACKNOWLEDGEMENTS

I thank my committee as a whole—Simon Tarr, Heidi Cooley, and Mark Cooper—for putting up with me as I continually changed my project. I owe a large debt to these people, not only for their understanding as this thesis project morphed, but for many, many contributions to my thinking and practice.

I owe an equally large debt to Jeremiah Shepherd. His offer to program a game for me threw me back into a world of game theory I had desperately tried to escape. Thanks JJ, you made everything better.

I thank John Hodgson for putting up with lots of my crazy ideas, and always being excited about games.

I thank Nathan Halverson for introducing me to all the sound theory I should have already known.

Special thanks (and apologies) to Michelle Skipper, Alex Hartman, James Owens, Alex, Davis, Caitlin Clark, Matthew Rice, Alex Anderson, Patrick Blake, and anyone else who dealt with my grumpiness, rants about noise, and indecision as I drug this project into completion.
ABSTRACT

This thesis documents the theoretical underpinnings of my culminating project, the video game [threshold]. It describes the subject of the game—noise—and the method of its discussion—play. The goal of this game is to encourage players to re-contextualize noise, shifting away from notions of interference and error, as the source code of the universe. This new viewpoint forces us to focus on all of the data we filter out. By assessing this data, we can gain a deeper understanding of the world around us.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii
ABSTRACT .. iv
LIST OF FIGURES .. vii

CHAPTER 1: INTRODUCTION TO THE SEA ... 1
 1.1 [threshold]: or, **How i Learned to Stop Worrying and Love the Noise** ... 1
 1.2 Frenhofer’s Failure .. 2
 1.3 La Belle Noiseuse .. 3
 1.4 The Process ... 4

CHAPTER 2: FINDING NOISE .. 6
 2.1 A Drop in the Line .. 6
 2.2 A(n) (Un)Limited Glitch ... 7
 2.3 The Sound of Noise-music ... 10
 2.4 La Belle Noiseuse (Redux) ... 13

CHAPTER 3: NOISE GAMES .. 16
 3.1 Cracked and Broken Media ... 16
 3.2 UnPlay ... 19
 3.3 To Game A Game .. 21
 3.4 What Else Can Games Do? ... 24
LIST OF FIGURES

Figure 1.1 Screenshot from [threshold]...5

Figure 2.1 Shannon’s diagram of a general communication system..................6

Figure 2.2 A glitched self-portrait of Rosa Menkman.................................9

Figure 2.3 Screenshot from Evan Meaney’s To Hold a Future Body So Close to One’s Own ...10

Figure 2.4 Luigi Russolo’s (pictured left) noise machines11

Figure 2.5 Databent screenshot from Jacques Rivette’s La Belle Noiseuse (1991) ..15

Figure 3.1 Modified vinyl record ...18

Figure 3.2 Sid Philip’s mutant toys from Toy Story (1995).........................20

Figure 3.3 Screenshot of a UFO attack in SimCity (2013)24

Figure 3.4 Desperate Fishwives conversation minigame26
CHAPTER 1
INTRODUCTION TO THE SEA

1.1 [THRESHOLD]: OR, HOW YOU LEARNED TO STOP WORRYING AND LOVE THE NOISE

Thesis is the action of putting something in a place. What is important is the place, and only then the manner of occupying it. Of taking it, holding it, setting oneself up there. Setting one’s foot on it. The foot, here, is the trace of a thesis, and the wall of colors, the noise, is at once battle and racket.

- Michel Serres¹

[threshold], as the culmination of my graduate research, encourages players to re-contextualize noise through play. Common conceptions of noise identify it as an unwanted entity, experienced as an interruption that we must overcome. The sounds we filter out, as dead pixels and broken data files. This interpretation allows artists to explore background noise, and how its appearance makes us re-evaluate our systems of suppressing noise. However, noise is not the adversary, it is not detrimental, it is not the background. It is both sound and fury, racket and battle. Noise is the source code of the universe—it is the reverse end of a black box.

[threshold], as a game, intends to confuse its player. There is a cycle of “noise” into meaning, dissonance into consonance, chaos into order, and back again. The game world is a maze created by sounds and images that are abstract, disconnected, and constantly interrupting each other. Visuals are

¹ Ibid, 53.
broken into chunks, appearing in random order; they are digital, they are pixels. Sounds stack on top of one another, until one set fades into the next; there are no edges, just waves cascading from one to the next. The maze, untouched, is a feedback loop. Players interact with this loop, clicking to change, combining pieces of the puzzle.

[threshold], uses play in order to challenge people’s ideas about noise. It is a foot in the door of change, a thesis, a jumping off point. This game is the foot in the corner of my Belle noiseuse. The questions—how do you make the beautiful noisemaker? how does play affect change? what statement does this kind of play make? what does noise-play accomplish?

1.2 FRENHOFER’S FAILURE

Three painters. Three paintings. Poussin—a young man—sketches quickly, with precise lines; he has no doubt. Porbus—middle-aged—fluctuates, one line precise another jagged; he has some doubt. Frenhofer—an old man—paints in color, in atmosphere; he is full of doubt.

The eldest accompanies the youngest to see Porbus’s painting, *Egyptian Mary*. The old master admires but says it is a colorless creature. With a few strokes of his brush he brings life to the painting, bringing it to light. With bold strokes of color, he transformed the indecisiveness of Porbus into life.

Frenhofer struggles over *La Belle noiseuse*, his masterwork. No one has seen his work. He keeps it in hiding, it has been so for years. Despite searching, no suitable model has been found. He finally finds the right one, Poussin’s young

lover Gillette. Invigorated by this model’s beauty, he feverishly paints, rapidly finishing his work.

Poussin and Porbus come to see Frenhofer’s masterpiece, finally complete. They expect to see Gillette’s figure. The painting they find is a swirl of colors, erupting from the canvas. In the corner is a single, perfect foot—Frenhofer’s thesis.

The two younger painters expected to see Gillette’s figure, transformed into Catherine Lescault, the belle noiseuse. Upon seeing Frenhofer’s painting they become disappointed. Devastated, the old master destroys his painting.

As the painter edges towards becoming master, the mind becomes riddled with doubt, with the fear of failure. The reaction from the old master’s underlings drove him mad. His skill with color, which so easily brought the Egyptian Mary to life, manifests into noise. Paul Barolsky says that Frenhofer’s doubt and failure “haunts modern fiction as he informs the consciousness of modern artists.” Failure is a malaise that hovers over the artist. Frenhofer’s madness defines how we react to noise.

1.3 LA BELLE NOISEUSE

The old master painted in swatches of color, combining pieces of a puzzles. For French philosopher Michel Serres, La Belle noiseuse, the beautiful noisemaker, reveals the nature of noise. In defining noise, he makes a distinction between two French words, bruit and noise. Bruit is noise as it is often discussed, auditory and informational distractions. Noise means contention, uproar, fury.³

The beautiful noisemaker, one foot in this world, the rest into noise, causes outrage and confusion.

Serres’s identifies the sea (nautical and nausea) as the location where noise is best heard. At sea, noise is ceaseless. The sea cannot be changed, it is limitless. There is no background, nothing contradictory to the sea. It is a wall of fury and the life bed of creation. “As soon as a phenomenon appears, it leaves the noise; as soon as a form looms up or pokes through, it reveals itself by veiling noise.” The noiseuse is not a phenomenon, she is the noise. Her one foot, jutting out of the color, veils noise.

1.4 THE PROCESS

The questions again—how do you make the beautiful noisemaker? how does play affect change? what statement does this kind of play make? what does noise-play accomplish? To find the answers, and understand what [threshold] is trying to do, each component must be separated and analyzed. This first chapter defined the painting, [threshold], and its model, La Belle noiseuse.

The second chapter, “Finding Noise,” establishes a language of noise. Models of noise from information theory, glitch art, and sound art are explored, and ultimately refuted. The work of Michel Serres provides a model to generate a new idea of noise that moves away from the position of the unwanted, away from failure and error. In this model, noise flourishes as the raw data all communication is built from.

The third chapter, “Noise Games,” uses Mary Flanagan’s concept of unplay to draw parallels between artistic practices utilizing noise and types of deviant play. From there, Roger Caillois and Gonzolo Frasca’s distinctions between paidea and ludus help illustrate how noise-play can be built into noise-games. Ultimately, the question is what kind of work can games do? This is explored by analyzing the educational game *Desperate Fishwives*.

The fourth chapter, “Reversing the Black Box,” begins with the problems of codifying noise, but why it has to be done. The end goal of a noise game is to use Anne Balsamo’s idea of design thinking to reverse engineer Serres’s metaphor of the black box.

Figure 1.1 - Screenshot from [threshold]
CHAPTER 2
FINDING NOISE

2.1 A DROP IN THE LINE

In 1948 Claude Shannon published “A Mathematical Theory of Communication.” For Shannon, communication is about reproducing messages between locations.\(^5\) Noise is understood as anything that interrupts the reception of a signal. The noisemaker cuts in between, directing the meaninglessness that disrupts order. Obviously, for a communications expert, this is unwanted. Interference prevents work.

\[ext{INFORMATION SOURCE} \rightarrow \text{TRANSMITTER} \rightarrow \text{RECEIVER} \rightarrow \text{DESTINATION} \]

\[\text{MESSAGE} \rightarrow \text{SIGNAL} \rightarrow \text{RECEIVED SIGNAL} \rightarrow \text{MESSAGE} \]

\[\text{NOISE SOURCE} \]

Figure 2.1 - Shannon's diagram of a general communication system

Ideal channels of communication would be able to reconstruct the original signal, even if it becomes mangled by noise. However, despite the struggle to remove noise, Shannon’s theories assume that all elements of a system have a point of entropy. Every system contains some kind of decay, which will inevitably manifest. The goal of a good communication system is to minimize how often there is a drop in the line, a blip in the system—to minimize the errors.

2.2 A(\text{N}) (UN)\text{LIMITED GLITCH}

In the most literal sense a glitch is a malfunction. A glitch is an interruption. A glitch is a moment of breakage, a stuttering noise artifact. We encounter them by chance; in TV broadcasts, video games, screens, phones—we experience these mishaps with all of our digital equipment. In trying to create a language of and for glitches, glitch artist/theorist Rosa Menkman asserts that “noise is unwanted, other and unordered.” This language of glitches hinges on Shannon’s idea that noise is error.

Menkman identifies glitches as a moment(um). They exist in between, not in the corrupted data / meaning of an object, nor in the in the subject / interpreter. Not a direct manifestation of corrupted information, the break happens in the act of transmission. Encountering a glitch pushes the spectator into a void of meaning. The loss of control creates a momentum that forces a spectator to acknowledge the structures of meaning-making. We assume our interfaces to be

7 Ibid, 11-15.
8 Rosa Menkman, The Glitch Moment(um), (Network Notebooks 04, Institute of Network Cultures, Amsterdam, 2011), 28.
showing us exactly what is going on when in fact they are a specific language, a specific construct of meaning-making that mediates between us and the incomprehensible machine language. According to Menkman, this shocks the witness into being lost and in awe.10

She does not completely accept Shannon’s position though, arguing that he “conveniently ... [leaves] human elements and contest out of the equation.”11

In developing a contemporary audio-visual theory of noise Menkman chooses to define three categories: compression artifacts, feedback artifacts, and glitches. Compression artifacts are what most people associate with glitch art (Figure 2.2). A feedback artifact is caused by a system whose output is returned into its input; she identifies a thermostat as a simple example of a feedback system. Lines between these two artifacts are blurred, however, as the level of technological understanding can make any of these noise artifacts seem like a glitch.

10 Ibid. 29.

11 Ibid, 28.
Figure 2.2 - A glitched self-portrait of Rosa Menkman

The moment(um) of glitch is an entirely perceptual event, defined entirely in the witness’s experience of it. Menkman identifies the most important aspect of a glitch as its unexpected nature. It is the surprise, the shock and awe, of a glitch that gives it its power. Just like the lines between artifacts can be blurred, the perception of noise and error can be.

For glitch art, noise typically manifests as an explosion of color. Evan Meaney’s film *To Hold a Future Body So Close to One’s Own* (Figure 2.3) exhibits many of the typified characteristics of glitch. Pixels, the building blocks of digital imaging, become apparent. Colors are exaggerated beyond natural hues and saturation, and seem to overtake the image. The edges of objects/subjects—in this case people—become blurred and distorted. In motion, elements of previous frames overlap into the next (an technique, when done purposefully, called datamosh). Though conceptually reaching beyond images, glitch art relies
most often on visual language, and the errors in visual representations, as its method of discourse.

Figure 2.3 - Screenshot from Evan Meaney's To Hold a Future Body So Close to One's Own (2008).

The problem with the type of noise Menkman describes is that it is limited by its form. Glitches only make noise apparent in their moment(um). By relying on Shannon’s model, glitch art provides a narrow vision, maintaining noise’s position as an unwanted artifact.

2.3 THE SOUND OF NOISE-MUSIC

The history of noise in music and sound art introduces a wider understanding of what noise can be. Beginning with Luigi Russolo’s 1913 futurist manifesto “The Art of Noise,” moving through modern music genres such as (the-not-so-aptly-named) glitch, noise in sonic arts carries a different role than
Shannon’s model outlines. In these acoustic practices, noise attains a more pervasive, and more importantly, constant state of being.

Figure 2.4 - Luigi Russolo’s (pictured left) noise machines

For Luigi Russolo, the development of noise-sound is directly related to the increase of mechanization.\(^\text{12}\) Noises—such as the sound of trolleys, automobiles, or loud crowds—are defined by their range of tones. Russolo argues that the orchestra as a medium for music is limited by the variety and quality of tones traditional instruments make. His futurist orchestra, made from an array of self-developed machinery, is superior because it emulates the sonic qualities of industrial machinery (Figure 2.4).

In “Acousmatics” Pierre Schaeffer draws on Russolo’s ideas to establish the practice of acousmatic listening, focused on the “sonorous object.” The sonorous object is a sound disconnected from its source. In this practice of listening, the source generating a sound is to be disregarded; the properties of a sound become the entirety of the sound. The timbre, pitch, or rhythm of any ordinary sound reveal a musicality to previously unnoticed sonic objects. In Schaeffer’s own composition “Étude aux chemins de fer,” tape recordings of trains are edited together to create a very rhythmically dense composition that could have just as easily been written for any number of traditional percussion instruments. However, his musique concrète allows the listener to focus on the musicality; by abstracting and re-sequencing train sounds, Schaeffer transcends the sonic limitations outlined by Russolo.

Both Schaeffer and Russolo appropriate disregarded sounds into works of music. However, their compositions appear to only address noise in terms of the mechanical. John Cage’s often discussed 4’33” draws the audience’s attention away from people as performers, away from instruments, and away from music. Performed in a concert hall, 4’33” brings the background noise of the space into focus. Adhering to Shannon’s model, sounds that would have detracted from the performance—such as air conditioning, coughs, movement of concert-goers in their chairs, the collective sound of breathing—become the performance. Noise is sound, sound is music. Noise is alive and it is all around us.

2.4 LA BELLE NOISEUSE (REDUX)

“Take a black box. To its left, or before it, there is the world. To its right, or after it, travelling along certain circuits, there is what we call information. The energy of things goes in: disturbances of the air, shocks and vibrations, heat, alcohol or ether salts, photons… Information comes out, and even meaning.”

- Michel Serres

The black box is a recurring metaphor throughout the writing of Michel Serres. Drawing from the mathematical analysis of filtering networks, the black box is any device where input is precisely specified on one side, output can be precisely described on the other, but the processes inside the box remain unknown. Anything from a computer algorithm to the human mind can be considered a black box. In these closed systems, the input and output are defining features. Not only is the system's implementation unknown, it is irrelevant to the outcome. What matters is that some kind of raw data goes in, and some kind of useable information comes out.

Each previous model of noise functions within the metaphor of the black box. For Shannon’s ideal communication system, it ultimately does not matter how the system works. The user only experiences the input and output of the system. Glitches are shock-inducing, revelatory experiences because they show us how mediated our technological experiences are. The sense of hearing, with its labyrinthine inner structures, represents the black box best of all.

In The Five Senses, Serres uses the black box to describe the process of raw sensory input being parsed into signals that allow us to navigate the world.

“The sound wave produced by a physical shock is transformed into a chemical signal carrying electrical information towards the centre.” Raw data—the sound of trolleys, automobiles, loud crowds, trains, or concert halls—is produced by waves in the air, it passes into the ear canal, and presses against the ear drum. The inner ear, with its labyrinthine cochlear structure, represents the black box.

Drawing on the sounds of noise-music, the ear as a black box reveals the true nature of noise. For Serres, everything to the left of the box is noise. It is “the background of information, the material of that form.” Information is created from noise, not impeded by it. However, we reject this. We reject our senses in search of unity. We reject Frenhofer’s belle noiseuse, casting her out as a failure. When in reality, her furious surge of color taps into the source code of the universe. She is a datamosh, she is silence, she is background noise. She is both made of noise and a noisemaker.

Each previous model of noise functions within the metaphor of the black box. There is a system, there is noise. But within each model, noise itself is recognized as the unwanted, on some perceptual level. Whether it is glitch recognizing noise as an error, or noise-music maintaining mechanizations as socially undesirable, or 4’33” calling attention to the sounds we filter out, these models present noise in terms of what it is not. In Serres model, the previously unwanted signals represent a type of code. Noise does not exist in opposition to information, information exists in opposition to noise.

Every system is composed of some kind of code. Languages, social interactions, music, and computer programs, are all built by certain codes. Noise is disruptive, yes. This is why Serres calls on the Old French *noise* rather than *bruit*. But it is disruptive because the way it undoes the codes that structure our knowing. Being aware of noise as a building material, we can deconstruct any system.

Figure 2.5 - Databent\(^{18}\) screenshot from Jacques Rivette’s *La Belle Noiseuse* (1991)

\(^{18}\) Databending is the process of manipulating the data in a digital file, with the intent of forcing it to glitch. Similar to the hardware process known as circuit bending. Both of these are elaborated on in section 3.1 of this essay.
CHAPTER 3
NOISE GAMES

3.1 CRACKED AND BROKEN MEDIA

Noise as a material, tactile substance, is the focus of Caleb Kelly’s *Cracked Media: The Sound of Malfunction*. Kelly summarizes cracked media as “simply redirected electronics.”\(^{19}\) Cracked\(^{20}\) and broken electronics are an aesthetic of failure.\(^{21}\) The devices and methods used by artists exploring this aesthetic call on each model of noise. The failures are glitches, the results are sounds, and the malleability of these sounds reflect their materiality.

Toshimaru Nakamura is a Japanese sound artist working with cracked media. Nakamura plays what is dubbed as the no-input mixer. Routing the output of an audio mixing console back through the input he establishes a feedback loop, which is processed and amplified through effects chains to create lush,

\(^{20}\) Kelly’s use of the adjective cracked and the noun crack is meant to evoke a state just before being broken. It is cracked, it is breaking, but it is still whole. However, his usage also elicits the software crack. Like cracked media, software cracks bend the original function of the thing being cracked. This connotation is probably detrimental. While there are many forms of software cracking, the most known application is the removal of copy protection. So while Kelly simply uses crack related to break, some may associate the term with theft.

\(^{21}\) I am drawing the term aesthetic of failure from Kim Cascone’s article “The Aesthetics of Failure: ‘Post-Digital’ Tendencies in Contemporary Computer Music.” Ideologically treading the territory between acousmatics and Menkman’s glitch moment(um), his article elaborates on the history described in section 2.3 of this essay.
ambient soundscapes.22 This crack exploits a traditionally negative outcome—
audio feedback—and manipulates the signal into soothing aural experiences. In
doing so, Nakamura completely bypasses the traditional function of a mixing
console. An iconic element in music culture, the mixer serving as the hub through
which discrete streams of audio flow. All this audio is carefully compared and
adjusted within a stereo field. Nakamura rejects this entirely; the no-input mixer is
a self-contained, interactive musical instrument.

Swiss/American artist Christian Marclay—who has worked in sound,
photography, and film/video—was a pioneer in using turntables as instruments.
Beyond hip-hop’s tradition of turntablism23, Marclay’s interest lies in the
materiality of the records themselves. He accomplishes this through a wide
variety of techniques, all of which would make record collectors cringe. He cuts
sections out (Figure 3.1) of one record, and places them in another. He scratches
records. He cuts a record in half, flips one side over, and pastes it back together.
He punches new, off-center holes for placing a record on the turntable. The new
sounds are not interested in what music is on the record—the cracks, pops, and
whirs created by the physical alterations become the music.

22 For examples, see Nakamura’s album Egrets, released by Samadhisound.

23 For more on turntablism, see Doug Pray’s 2001 documentary \textit{Scratch}.
For Kelly, the logic behind cracked media relies on Michel de Certeau’s concept of “tactic” versus “strategy.”24 De Certeau defines a strategy as the will of those in power—businesses, armies, cities, etc. Strategies act as the “calculation (or manipulation) of power,” and rely on some base of operations.25 Through the distribution of force, these places allow the power-holder to have dominion over others. In contrast, tactics are fleeting moments of freedom—not designed to overthrow power, this “art of the weak” allows users to make do inside the system of strategies.26 Tactics are a way to move around the black box. While users still do not understand the strategies, the insides of the box, they are able to make their own lives more comfortable by exploiting cracks in the power-holders’ methodologies. Unfortunately, de Certeau argues these gains are short-term, unretainable due to the user’s lack of base of operations.27 Tactics, like the glitch moment(um), are temporary.

In cracked media, equipment manufactured by businesses of strategy (turntables, CD players, AM/FM radios, mixing consoles, old toys, DIY

26 Ibid, 37.

27 Ibid.
electronics) as well as the media formats (vinyl, compact disc, cassette tape, mp3, digital video) are wielded against designed functionality. For these artists, the subversive use of technology, the crack, is a creative tool. It allows them to continually repurpose objects—like the turntable—long after their inception. It allows them to push systems—like the mixing console—well beyond their accepted use. Nakamura’s and Marclay’s use of cracked media is a tactic to play with noise. The motivation for the crack is, ultimately, their creative expression. Noise is literally played as an instrument.

3.2 UnPlay

The drive for this kind of noise-play develops early. In Man, Play and Games, Roger Caillois asserts that the “elementary need for disturbance” is actually a basic, improvisatory and joyous impulse. Called paidea (from the Greek pais meaning boy), this disruptive play is the spontaneous manifestation of our play instinct. It starts with a child’s need to “touch, grasp, taste, smell, and then drop” any object in reach. From here, the behavior transforms into “endlessly cutting up paper, pulling cloth into thread, breaking up a gathering, or holding up a line.” The baby plays with the rattle. The toddler draws on the wall with crayons. The child argues with his parent. The tween starts to use curse words. The teenager listens to loud, aggressive music.

29 OED

Paidea forms the basis of what Mary Flanagan calls unplay.\(^{31}\) As a mode of critical play, unplay functions to subvert traditional social convention. In “normal” play, culture sets the standards, framing the context around play. An individual’s socio-economic background, geographic location, and the combination of knowledge and beliefs feed into the greater understanding of culture. The combination of this data creates the world in which play is enacted. Flanagan uses children playing house and doll play to illustrate the cultural affects influencing play. In these scenarios, the society a child grew up in informs them of what practices to carry out. The rules children encounter in their real homes become the rules of their doll homes. Doll play becomes a “faithful mirror” that trains children how to act.\(^{32}\)

![Figure 3.2 - Sid Philip’s mutant toys from Toy Story (1995)](image)

Some children, instead of reenacting culturally acceptable types of play, rip off the body parts of dolls, reassembling them in new configurations (Figure 3.2). They burn the dolls; they maim them beyond recognition, because for them

\(^{32}\) Ibid, 30.
it is fun. By acting out alternate roles, unplay allows the child to deviate from the “normal” cultural play described above. For Caillois, these actions would be typical. But, for many this unplay is a subversive act. Unplay is disruptive, like noise, because it forces participant and observer to deconstruct the rules that create the system. Dismembering dolls makes people uncomfortable because it isn’t how things are supposed to be. Play is not supposed to be noisy—it’s free, it’s make-believe, it’s the innocence of children.

3.3 To Game a Game

Extending beyond doll-play, from being mean when you should be nice, to using a game to live out a homosexual lifestyle, to playing as the opposite gender, to telling someone they are wrong when you know they’re right, unplay is a way of exploring the limits and boundaries of a system through deviation. Options compound, infinite paths unfold—any abnormal behavior becomes a tactic.

...behaviors like cutting up your vinyl records, or purposefully creating feedback. Cracked media are a way to unplay models of noise, yes. But, how do you make a game out of noise?

Complementary to paidea, Caillois identifies ludus. Ludus is a refinement on the initial forms of play. Rules are created; skills are developed. There is conflict with an obstacle. The complexity of activity increases. Playing house becomes chess; not only as more and more rules are developed, but as an opponent is introduced. Games are defined by opposition. Paidea is free, improvisational, unorganized. Ludus is complex, adversarial; there is a
something to work against. The opponent can be another human, a certain level of skill, or the rules of the game itself. A game is not limited by who or what the opponent is.

Gonzalo Frasca elaborates on Caillois’ terminology, establishing paidea as games without winners/losers, and ludus as games with them. A merry-go-round is paidea because none of the rules (to turn in circles; players must hold hands) dictate a win condition. Chess falls under the category of ludus because it has both a paidea rule (pawns move one square at a time) and a ludus rule (to take the other player’s king). Paidea can easily be transformed into ludus. Jumping on one foot becomes jumping on one foot for 10 minutes. There is now an adversary—both physical endurance and the duration of time.

Frasca is interested in the power of the simulation video game as a representational form. Simulations have three elements: “they represent a “world”; they pay great attention to detail and they have no clear goals.” Every simulation is a contained system. These systems are very in-depth. There is no way to win—so they are paidea games. In video games “players find in simulations a realm where to experiment with a complex system.” Popular examples of simulation games include Microsoft Flight Simulator, Madden NFL, Gran Turismo, and the dozens upon dozens of dating sim games. However, the most relevant example, for unplay, is SimCity.

34 Ibid, 12.

35 Ibid.
The *SimCity* series of games simulate urban environments. Each city represents its own world, there is tedious attention to detail, and there is no win condition. Players assume the role of the mayor, and have to control the creation of a city. Everything from water pipes to roads to residential, business, and industry sectors must be strategically placed. Player’s do not, however, control the city’s inhabitants. There is a complex set of rules controlling how the player’s creations affect the people of the city. The player’s regard, or disregard, for those rules affects the social and economic growth of their city. If the people are happy, money goes up. If the people are unhappy, they leave, and money goes down. This relationship is constantly in flux as build and expand the sections of the game world.

Ludus rules can be created inside this system. The player could determine that they want their city to reach a certain population by the end of the year, or to bring a specific amount of tax revenue. They could want to create the largest city, the most environmentally-friendly city, or any other scenario where the goal produces an end to the play state.
These rules do not have to benefit the citizens. Player’s could design a city full of pollution. They could build a city with no roads. They could, for some reason, summon UFOs to terrorize citizens (Figure 3.3). Simulations are the best type of game for unplay because they provide the most complex systems. This introduces the greatest number of opportunities to deviate.

3.4 WHAT ELSE CAN GAMES DO?

Games, especially simulation games, are not only for play. The intricate models created for, by, and in games can be used for education, training, or exploring / critiquing social issues. Every aspect of a game becomes a tool. Processes, sub-routines, player interactions, mini-games, etc., create arguments that influence players through the act of play itself.

Ian Bogost coined the term “procedural rhetoric” to describe “the practice of using processes persuasively, just as verbal rhetoric is the practice of using oratory persuasively and visual rhetoric is the practice of using images
persuasively.”36 But what does it mean to use a process to make an argument? Perhaps the easiest way to understand procedures as argumentation is to look at a specific structure of processes, a specific piece of software.

\textit{Desperate Fishwives} [DF] is an educational game that functions as a study in applying procedural rhetoric.37 DF’s objective is for player-students to experience first-hand the day-to-day life of 17th century English villagers. Specifically, the desired outcome is that students learn how community was integral to villages in this time period. This is executed through simulation gameplay, akin to SimCity.

Players are presented with a problem that needs to be solved by and for their community, so of course no individual player has the capacity to create a win-state. Cooperation is paramount to succeeding. There is no explicit revelation of necessary cooperation; the argument is reinforced through rules governing the game, and by processes that construct the system of play. DF persuades players by creating an insular system that encourages a specific outcome. You can play, or unplay, the game however you wish, but if you want to complete the objective as is socially expected—both within and without the game-space (in keeping with current historical scholarship)—then you have to follow the rules, follow procedure, follow expectation.

DF features a conversation based mini-game (Figure 3.4) that very specifically addresses expectation, educating players about interactions between classes. When engaging a non-player character [NPC] in conversation a meter appears; each color on the meter represents manner of speech—low class (red), neutral (white), and high class (blue). Without the game telling players how these colors signify exactly, they discover that they need to speak in a specific way when dealing with certain characters.

It also becomes readily apparent that speaking to someone outside of your class is incredibly difficult. Figure 3.4 depicts a lower class individual speaking to a higher class individual. The blue zone represents the area that must be selected in order for the player to get the most information from the NPC, however the majority of the zones are red because the player is of a lower class. Even without explanation, this process becomes natural to the player. Why?
Desperate Fishwives uses expressive processing\(^{38}\) to subtly reinforce an idea. Not only can processes be used to make arguments, they can also be used to reveal how systems operate. Playing the conversation mini-game teaches the player the internal logic of the game. It is through this understanding we become aware of procedural rhetoric. Expressive processing is the language, procedural rhetoric is the structure.

CHAPTER 4
CONCLUSION

4.1 CODIFYING NOISE

Making a game about noise confronts a unique problem: discussing noise codifies it. Simon Reynolds argues that noise is the antithesis of meaning, a “wordless state in which the very constitution of our selves is in jeopardy”\(^\text{39}\). He describes noise as the process of removing the frame from an object. To enact this process is to deconstruct the meaning of a thing, strip it of all information and leave bare its form. Or as he says, “out of your head is the place to be.” Invoking noise reverses the black box. This is however a difficult state to maintain—existing only briefly—the invocation of noise leads to the creation of new meaning.

A glitch is no longer a glitch if you make it on purpose. The surprise and shock that accompany the moment(um) disappear. A sound, unwanted, stops being noise once it is incorporated into a musical composition. Cracked media stop producing noise once they are repurposed. \textit{La Belle noiseuse} ceases to be noise once Poussin and Porbus judge her merits. Invoking noise reverses the black box, but codifying noise runs it back through again.

4.2 Design-Think

In *Designing Culture*, Anne Balsamo calls for society to engage in design thinking. She advocates that we develop our capacity for imaginative critical response to the technologies which surround us. Such thinking requires an overhaul of the entire educational system to shift its focus not from the innovations, the products of thought, but to the processes of innovation itself, and more specifically to how culture is shaped by and through the innovations that we design.

Objects are defined by the information they carry. But do we as subjects have direct access to the meanings contained inside objects? Balsamo argues no, that the design of objects inform and are informed by the historical contingency of the culture in which they were created. Therefore the meaning-making of an object lies in the analysis of its contingency as registered by the subject, which will naturally be affected by their perspective.

4.3 NoisePlay

The way we treat noise designs our ability to understand it. By ignoring noise, we ignore the raw information coming into the black box. We lose the ability to see backwards, to assess information on its own. Every object is filtered through a black box. However, because every object is on the output end of a black box, it can be reversed. Liked cracked media, this reversal is a tactic.

Creating a game meant to focus on noise may cause it to disappear, but it forces us to design-think. In the same way glitch art seeks to create revelations about systems, noise-play can still affect change. Through expressive
processing, a noise game teaches players how the black box works. Through procedural rhetoric, a noise game encourages players to rethink what noise means to them.

4.4 POST-MORTEM

[threshold] creates a system where random pixels change at a random rate. There are multiple audiovisual assets. Interacting with the system changes its flow. You can choose to disrupt that flow, causing noise inside noise. Players can create visual patterns, combine sets of sound. Or, they can try to unify the audiovisual elements into a single image and sound.

There is an uncertain number of combinations. Players can play or unplay, create or break. Inside this system are an unknown number of paidea and ludus rules. The style and structure of each player’s composition is unique to them. What bridges each experience is the sandbox itself. The game is a playground of noise.

[threshold] is a failure in many ways. The game does not communicate noise as Serres asks us to understand it. The game does not provide the world of a simulation. The game does not explain its black box.

[threshold] does accomplish one goal, one important goal. It is a playground, an unplayground. This work effectively encourages noise-play. It is a starting point for the reinterpretation of noise.

[threshold] is not the sea. It is the Belle noiseuse. This game is my thesis, my foot in a revolving door of noise.

I am Frenhofer. This is my failure.
It is beautiful.

Noise.
REFERENCES

Sim City. EA Games. 2013. Video game.

To Hold a Future Body So Close to One’s Own. Dir. Evan Meaney. 2008. DVD.

APPENDIX A - GAME DESIGN DOCUMENT

1. Version History

Version 0.5: 02/22/13, rough outline of all document elements
Version 1.0: 02/25/13, completed document
Version 1.5: 03/16/13, revised

2. Vision Statement

2.1 Logline
What is noise?

2.2 Gameplay synopsis
[title of game] leads players in an exploration of noise cycles. Consonance into dissonance into consonance, life into death into life. The player can choose to interact with the system at the risk of destroying everything, or let noise overtake the screen.

3. Audience, Platform, and Marketing

3.1 Target audience
Ages 18-40.

3.2 Platform
PC/iOS

3.3 System requirements
As little as possible.

3.4 Top performers
A important distinction in considering top performers is the difference between games designed for creative expression (art-game) and works considered artful (game-art). The works of Jenova Chen & Thatgamecompany (flOw, Flower, Journey) are some of the most widespread examples of an art-game. According to MoMA recent inductions, Pac-Man, Tetris, Myst, The Sims, Portal, and EVE Online are all classic examples of game-art.
3.5 Feature comparison
I am not familiar with any games [title of game] shares specific gameplay.

3.6 Sales expectations
This application should be released for free.

4. Legal Analysis
There should be no legal concerns.

5. Gameplay

5.1 Overview
The game screen is divided into a grid. When players being the game, a video begins to play. As time progresses, a random square—referred to as pixel—on the grid transforms into the corresponding section of the next video. This transformation continues until the entire screen is the next video. When a pixel changes, the player has the option to leave it alone (thereby continuing the cycle of noise), or to click the pixel. When clicked, a pixel will randomly select another video—the player’s attempt could result in returning to the original video, or it could become something else entirely. If a pixel is altered too many times, it becomes a dead pixel displaying only static.

5.2 Gameplay description
In this context, noise will predominately assume the role of “that which impedes the flow of information.” The presence of a fragmented image over the main image is noise.

5.3 Controls
The UI is very simple, point-and-click.

5.3.1 Interfaces
The game requires a mouse for input.

5.3.2 Rules
There are two constant forces in the game. 1) There will always be noise. 2) Trying to end noise will result in blankness/blandness.

5.4 Levels
There will be 4 videos, which could be considered levels. Each video will represent one of the modes of noise—acoustic, information theory, subjective, material—as identified by Caleb Kelly.
An idea: each video will also assume the typified color scheme of each season, to further drive the idea of cycles. The changes in color tone will also increase “noise.”

6. Story

6.1 Synopsis
Cycles. Repetition. Control. Noise. There is less of a traditional “story” and more an exploration. In this way, I want to draw on the techniques of experimental film—and in some ways specifically the essay film. When conceptualizing the game I was thinking about Farocki’s *Images of the World* and how it conveys its narrative.

6.2 Narrative devices
The crux of this game is that it will develop its narrative through gameplay.

7. Media List

7.1 Interface assets
The start screen will require design.

7.2 Environments
Since I’ve defined each video as a level, these would be the “environments.”

7.3 Music and sound effects
Each visual element will have an accompanying sound. These sounds will correspond thematically to the visual.

If the video static overtakes 50% of the screen then an aural static will also be introduced.
APPENDIX B – ARTIST’S STATEMENT

AUTHOR’S NOTE:

What follows is a statement of practice written my first semester as a graduate student. I am—to my own perception—a much different artist than when I wrote this document. However, the ideas boiling under my surface are largely the same. It is my understanding of them, their history, and their breadth that has shifted. What follows is a diagram, tracing the evolution of my thought between two written documents.

STATEMENT OF PRACTICE

As an artist, I do not seek out my subject. I do not construct things, I do not create meaning. I am, in fact, not even in control over my own work. I design performative glitch art that interacts with and responds to space. Most people encounter their environment through their eyes. I don’t see life; I hear it. When entering a space, objects—best defined as anything that can be perceived by a being—present themselves to me—the subject—ready to have their meaning dissected. We create culture by consuming and interpreting the meaning—past, present, and future—of objects. All objects serve some kind of function; an art-object is any kind of object that is created with the intent of expression. These objects can be of any media—I choose sound because it is the most immediate. I choose glitch because of its impermanence.
In studying media arts, it is apparent that the bulk of scholarship on media culture is of and pertaining to the visual. One could create an incredibly vast compendium of analysis on visual media culture, with notable theorists like Barthes, Benjamin, Bentham, McLuhan, Bergson, Bazin, etc. But if one is in search of writing pertaining to the auditory, to sound and its impact on listener and society as a whole, such material is relegated primarily to the psychological study of how hearing operates, historical texts on the medium of sound, musicology, technical manuals on the process of capturing and recreating sound-objects. There is a comparatively small amount of contemporary study on sound art. SOUND is the most persistent of forces because it cannot be shut off; even with the best earplugs we still hear. Like the visual, sound is an incredibly complex phenomenon, however the ears are more sensitive than the eyes. The dynamic range of human sight is, at its maximum, approximately 90dB. The human ear has a dynamic range of approximately 140 dB. That is a 40 dB difference in range. In terms of sound, a difference of 40 dB SPL is like the difference between traffic on a busy highway and a jet engine at 100m. If we have the ability to perceive auditory information on a much wider spectrum, then why focus so heavily on that which is seen? Why look first? In his article “Say Something About Music,” Hildegarde Westerkamp urges the reader “Walk and listen. Stop and listen. Go around the next corner and listen. Find a favorite spot in your neighborhood and listen. Don’t speak to anyone. Walk on and listen.”

Here, Westerkamp touches on a very important aspect of sound, and art in general, that drives my inquiry forward—SPACE. Space, the location of subjects
and objects co-presenting to? with? each other, is an instrument that is both created by and the creator of culture. It is an ever-present vibrating musical environment, whose meaning is a result of itself-at-work. Without space, sound does not exist. In fact, the act of creating sound is to create it into a space. Or possibly it is more apt to say that it is created from a space as spactial. We define a site as a space, sanctioned off from the space. A space is created by context, by the meanings ascribed to it. This is of course a cultural act. All locations have specific functions that have been ascribed through iteration. The site of an art-object can now be understood as a contextual frame through which meaning is to be disseminated. The frame is a window, the focal point for cultural observation; through the frame we observe the historical contingency of an object. We construct frames as a means to interpret. This is troubled though, because as previously established the space itself is also a construct. How does a construct created by information inform additional constructs? It is simple—both the object and location are engaged in an iterative process of meaning-making. So, space is constantly performing sound whose meaning is a result of itself-at-work. To make sound is to happen in a moment, to be LIVE.

In contrast, to create a photograph or film is to capture something. The process of filming is the process of preserving a single instance of reality—whether or not that scene is something with a referent to the real/material world—to be encountered at some later point in time, a point after the moment of creation. The design of image-based art-objects is not in their PERFORMANCE. The creation of a visual art-object then is not meant for a place; it is the end
result that is most important, this final stage of the artwork that is performed into a space. A sound is immediate.

This immediacy is an object’s aura. In "The Work of Art in the Age of Mechanical Reproduction," Walter Benjamin asserts that the aura of an object is lost when it is captured and recreated. Before the age of reproduction, art had a cult value. It was tradition, ritual. The loss of aura shifts the value of art from the cult to the exhibition. This means that the presence of an object is more important, more authentic than the reproduction. There is a distance between the capture of an image and its performance. So, the fundamental difference between an image-object and a sound-object is time. The photographic image captures an instance of reality onto film creating a loss of aura between the art-object and its referent. The meaning of these objects is not created at their inception, first time must pass. Meaning is infused into an image as it assimilates the meaning of the objects it depicts, as it is framed, as it performed again into a site for viewing. Sound is the one whose initial iteration exists in the here and now. Meaning is spawned instantly from the frame surrounding it, from the space, from the living context it is born out of and into.

Sound is Live

LIVE is breathing. It is alive. It is the thriving activity between objects in a space. It is the physical interaction between elements of a performance. Live music is music as it happens in space. A video performance produces a stream of visual data, transferred from the space it occurred to be performed in the space you are viewing. Live is performance. In performance the meaning of the
art-object transpires in the moment of its happening. The participants use space
to interface between this moment of creation and culture at large. As opposed to
physical art-objects, the performative art-object does not contain meaning. The
subjects are the location of meaning, not the object itself. It is the interface of not
only the performer and the spectator, but also with the INTERFERENCE of the
site itself. As the performer, one does not mediate between an audience and an
object but between themselves and space. In performance we arrive at the
purest form of an object’s essence: there is no repetition, there is no reproduction
—there is nothing but the play between performer, participant, and site. The art-
objects that derive from performance are the result of the participants—audience
and performer—interfacing with space as a cultural substratum.

Usman Haque’s “Evolving Sonic Environment” is a site-specific installation
that uses a network of sonic devices that function like neurons that produce high-
frequency sound. These sound producing objects react to the presence of
subjects entering in the space, essentially talking to one another through these
high pitched sounds. Placed in the room are EEG-like devices that record—as
waveforms—the histories of the sound producing objects. The idea of this is to
track how the behaviors of the devices are affected by the way in which the room
is occupied. Interesting to consider is how these objects are performing to the
space and to the subjects they interact with. The performative element is carried
out by a non-living entity as reaction to the living space and bodies that it meets.
Performance, while existing in the space where subjects and objects meet, does
not have to be enacted by the living, or rather any sentient being. This
soundscape of seemingly just NOISE, interference, background chatter is communication between objects.

Information is performative. Design is performative. Communication is performative. The ways that we produce and articulate meaning are performative. Even the creation of a space from the open space is a performance; it is the enacting of cultural artifact. In defining space as a cultural substratum, Giancarlo Toniutti refers to space as a biotic ecosystem. Similar to the chatter of Haque’s installation, the sound activity within space is like a neurotransmitter. The transmission of sound does not convey its message laid out for us to understand; instead it carries the means by which we can interpret meaning. On its own sound is just information, a cultural artifact in need of interpretation; it is the performance of sound, its reception—the reply from subjects when interacting with this sound-object—that brings meaning to it.

There is an interesting bit of language to unpack when it comes to performance, especially with music events: when one attends a concert, he does not go to hear music played, he is there to see it performed. You don’t go hear a show you go see it. Why is this? It is possible that this phrasing is simply a carryover from our visual-centric existence; however, it posits vital questions when considering John Cage’s “4’33.” One of Cage’s most known works, “4’33” is an audio/visual performance comprised of four minutes and thirty three seconds of silence. Despite being a musical composition, the visual aspect of this piece is incredibly important; that is an interesting sentiment. Creating an entirely “silent” piece challenges what music is. It challenges the conventions of a concert hall. It
is obvious through this piece that performance and space are essential elements of music to Cage, and in silence he lays bare the concert hall’s attempts at separating space from performance by exposing only the sound of space. The INTERFERENCE of the site is the music. In effect, the “performer” is less the arbiter of performance and more the conduit through which space performs.

Site of Sound

NOISE is commonly understood as a sound, especially one that is loud or unpleasant, or that causes disturbance. In a more general sense, noise is irregular fluctuations that accompany a transmitted electrical signal but are not part of it and tend to obscure it. Noise is interference; it is the unwanted background. In thinking about “4’33,” one wonders if there is such a thing as unwanted sound. Are all sounds not music? Alvin Lucier’s “I am sitting in a room” features him speaking into a microphone, narrating a piece of text. He then plays this recording back into the room and records this sound. The process is iterated until eventually the only remaining aspect of his voice is the rhythm; the sound has been overtaken by the resonant frequencies of the room itself. This piece forces acousmatic listening, because as the sound transforms from identifiable speech into a wave of lush sound, it detaches the listener from the source. What we hear is Lucier using this iteration to play the room. His speech is reproduced repeatedly. It is captured, played, recaptured. It is used to make the room into an instrument. Eventually we arrive at hearing only the room, the way in which sound moves inside this single space. Imagine being in the room and
experiencing this resonance, the feeling of this music as it drives the natural frequencies of space.

Both of these works deal with ambiguous performers. Is it the composer having written the piece? The musician facilitating the experience? The site of these sounds, as they cascade through the architecture and resonate? R. Murray Schafer says the world is a “vast musical composition which is unfolding around us ceaselessly.” The modern day listening environment consists of hi-fi and lo-fi soundscape; a hi-fi soundscape is a space that has a low signal-to-noise ratio, and a lo-fi soundscape is a space full of noise. Noise here is defined as ambient sound that developed as a result of the industrial revolution. The problem with noise is that we have polluted the natural music of the world with extraneous sound. Schafer argues that the only way for the soundscape to return to harmony is for us to recover silence from the noise. Space is an instrument itself; the soundscape is living music that must be interacted with. To reclaim the biotic ecosystem, the living landscape of sound that pervades our knowing, we must listen. To reclaim the soundscape from noise is to reintroduce silence. Yet, is this noise an issue?

Simon Reynolds argues that noise is the antithesis of meaning; that it is a “wordless state in which the very constitution of our selves is in jeopardy.” He intends the term “noise” not to mean just the unwanted background sounds that bleed through, but as a larger entity which destabilizes the codes we use to construct meaning. Noise is the process of removing the frame from an object. To enact this process is to deconstruct the meaning of a thing, strip it of all
information and leave bare its form. This is however a difficult state to attain—existing only briefly—as the creation of noise leads to the creation of new meaning. Encountering an object that has been rid of context, we immediately begin to classify it. In doing so, we create a new taxonomy, a new set of meanings. For example, a school building has a purpose, serves a function. Were we to remove that function we would be left with visual noise on the landscape. Without context the building is now unwanted noise impeding the flow of the natural landscape. Now we have an abandoned building, a lo-fi landscape. There is beauty in it, but already it isn’t noise. In calling it an abandoned building I’ve classified it, given it form to adhere to. Then a graffiti artist tags the exterior, the homeless take shelter inside, or kids explore the structure; now the building has purpose again.

A GLITCH is a sudden, usually temporary malfunction or fault of equipment. Like noise it is unwanted. Like noise it is an impedance in the flow of signal. Like noise it blocks our capability to form meaning from an object. However, a glitch is more realistic than noise. A glitch is interrupted; never does it claim to exist beyond one stuttered moment. Traditionally these occurrences are unexpected, ephemeral. Part of the fear—and fun—of it is the inability to predict when and how they will surface. To create a controlled glitch is to create noise knowing the limitations of that form. But to control a glitch, to control noise seems counterintuitive. Does the interrupted flow of one stuttered moment lose meaning if the impetus is no longer random? To create glitch is to approximate noise, because in reality we cannot control noise. Noise in reality is a glitch, a brief
moment of meaninglessness that cannot be sustained. To recreate noise we must perform new glitches, but again there is the question: do these temporary malfunctions lose meaning and become a stagnant form when they are coordinated? What frees a controlled glitch from stagnation is performance. Each time one is performed it is contextualized in a new way. Upon being created in a space the glitch-object encounters new subjects and is imparted with different meaning, just like any other cultural artifact.

Glitch is a difficult aesthetic to work with because on its own it is just noise. It must be incorporated into some kind of system. The initial struggle and resistance with using this thought process is how to make it one’s own. My work uses glitch as a method to explore the ways in which we define space and sound. Sound exists only in space and as it is heard by the subject. Sound is always performed. Glitch as a localized antithesis of meaning, as a burst of dissonance interfering with perception becomes a tool to expose the ways in which sound is an ever-present re-articulation.

“glitchchopscreewstretch” (2011) utilizes pop songs as the epitome of cultural product. These products are deconstructed by glitching and stretching their context out of existence. By removing context we strip these pop artifacts of their cultural significance. As an audio recording, this piece uses glitch to exemplify how noise is formalized. Using hacked audio files to create meaningless sound, “glitchchopscreewstretch” focuses on how those sounds have rhythm, how they have melody. Without being something we would codify as such, these sounds adhere to the codes of music. Songs are broken down into
what should be pattern-less discord, yet there is inherent form to it. As we note that form the sounds are reintroduced into culture. As a performance this piece destabilizes the relationship between performer, audience, and space. The fact is that noise art is extremely uncomfortable to listen to. It berates the listener with the fact that they cannot make sense of it. More than that, it propagates into a space and introduces the same conflict. It is common for the interference of a site to influence music, but when the music itself is interference the dynamic is troubled. The information carried in this sound is broken; it is precisely what Schafer would have wanted gone. From this is born a new ecosystem.

“Entelechia Again” (2011) is an audiovisual installation asking the viewer to reconsider the ways they understand and define space. All places are cultural substratum, yes, but often we only consider location in the moment. In fact, the brunt of my research relates solely to the moment of performance, the here and now. Entelechia is a word from Aristotle’s discussion on physics meaning the form of an object. It is the form that gives meaning to the matter. “Entelechia Again” projects sight and sound from the interior of a building on to the exterior. These projections are run through delay processing so that multiple iterations exist simultaneously. Conversations stack, movements repeat, the information of the space accumulates as, like in Lucier’s “I am sitting in a room,” iteration performs the space out and onto itself. This repeated effect creates glitches, stutters in meaning as instances loop on top of each other. The interior soundscape compounds on itself, destabilizing as it is performed. Similar to Haque’s “Evolving Sonic Environment,” the performance is enacted by the
communication between two entities, here being the interior and exterior. The information contained in any specific instance is irrelevant; the entelechy of site is in iteration. As a glitch is performed it floods the outside environment with meaning that was not intended for this place.