Elastic Wave Propagation in Sinusoidally Corrugated Waveguides

Sourav Banerjee
University of South Carolina, United States, banerjes@cee.sc.edu

Tribikram Kundu

Follow this and additional works at: https://scholarcommons.sc.edu/emec_facpub

Part of the Acoustics, Dynamics, and Controls Commons, and the Applied Mechanics Commons

Publication Info

This Article is brought to you by the Mechanical Engineering, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.
Elastic wave propagation in sinusoidally corrugated waveguides

Sourav Banerjeea) and Tribikram Kundub)

Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, Arizona 85721

(Received 15 November 2005; revised 12 January 2006; accepted 13 January 2006)

The ultrasonic wave propagation in sinusoidally corrugated waveguides is studied in this paper. Periodically corrugated waveguides are gaining popularity in the field of vibration control and for designing structures with desired acoustic band gaps. Currently only numerical method (Boundary Element Method or Finite Element Method) based packages (e.g., PZFlex) are in principle capable of modeling ultrasonic fields in complex structures with rapid change of curvatures at the interfaces and boundaries but no analyses have been reported. However, the packages are very CPU intensive; it requires a huge amount of computation memory and time for its execution. In this paper a new semi-analytical technique called Distributed Point Source Method (DPSM) is used to model the ultrasonic field in sinusoidally corrugated waveguides immersed in water where the interface curvature changes rapidly. DPSM results are compared with analytical solutions. It is found that when a narrow ultrasonic beam hits the corrugation peaks at an angle, the wave propagates in the backward direction in waveguides with high corrugation depth. However, in waveguides with small corrugation the wave propagates in the forward direction. The forward and backward propagation phenomenon is found to be independent of the signal frequency and depends on the degree of corrugation. © 2006 Acoustical Society of America. [DOI: 10.1121/1.2172170]

PACS number(s): 43.20.Fn, 43.20.El, 43.20.Bi [TDM]

Pages: 2006–2017

I. INTRODUCTION

In recent years acoustic frequency filters are gaining popularity in the field of vibration and noise control and in acoustic bandgap analysis. The structures are being designed with periodic geometries to create acoustic bandgaps at desired frequencies. For the efficient design of such structures and correctly interpreting the experimental results with these structures, a complete understanding of elastic wave propagation in periodically corrugated structures is necessary. Another application of this study is in the nondestructive evaluation of different aerospace structures, components of integrated smart structures with nonplanar boundaries and civil structural components (rebars, pipelines, etc.).

The wave propagation analysis in structures with planar and curved boundaries has been the subject of numerous investigations for over five decades. The analytical solution of wave propagation in structures with nonplanar boundaries and interfaces has been the topic of investigation in the last three decades (Nayfeh et al., 1978; Boström, 1983, 1989; Standström, 1986; Fokkemma, 1980; Glass and Maradudin, 1983; El-Bahrawy, 1994a, 1994b; Banerjee and Kundu, 2004; Declercq et al., 2005). Stop bands and pass bands of the Rayleigh-Lamb symmetric modes in sinusoidally corrugated waveguides have been studied by El-Bahrawy (1994a). Only recently, generalized dispersion equations for periodically corrugated waveguides have been studied and solutions

a)Electronic mail: sourav@email.arizona.edu

b)Corresponding author: Tribikram Kundu, Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, Arizona 85721. Telephone: (520) 621 6573; electronic mail: tkundu@email.arizona.edu

© 2006 Acoustical Society of America
Materials with a paraxial approximation was proposed by Newberry and Thompson (1989). Since numerical integration is a time-consuming operation, Wen and Breazeale (1988) proposed an alternative approach. They computed the total field by superimposing a number of Gaussian beam solutions. They have shown that by superimposing only ten Gaussian solutions, the field radiated by a circular piston transducer can be modeled. Schmerr (2000) followed this approach to compute the ultrasonic field near a curved fluid-solid interface. Later Spies (1999) and Schmerr et al. (2003) extended this technique to a homogeneous anisotropic solid and water immersed anisotropic solid, respectively. Although a significant progress has been made in the ultrasonic field modeling in a homogeneous medium, the effect of curved interface with gradually varying curvature near an ultrasonic transducer of finite dimension has not been studied extensively yet. Recently Schmerr (2000) and Schmerr et al. (2003) studied the ultrasonic field near a fluid-solid curved interface. Spies (2004) studied the effect of the interface on the ultrasonic wave propagation in an inhomogeneous anisotropic medium with the farfield approximation. These investigators followed multi-Gaussian beam modeling approach. Although this technique has some computational advantage it also has a number of limitations similar to those of other paraxial models. For example, it cannot correctly model the critical reflection phenomenon; it cannot model a transmitted beam at an interface near grazing incidence. This technique also fails if the interface has different curvatures, or when the radius of curvature of the transducer is small, as observed in acoustic microscopy experiments with its tightly focused lens. A detail description of the limitations of the multi-Gaussian paraxial models can be found in Schmerr et al. (2003).

The technique based on the DPSM (Distributed Point Source Method), proposed by Placko and Kundu (2001, 2004) avoids the above-mentioned limitations and does not require any farfield approximation. In this technique, one layer of point sources are distributed near the transducer face and two layers are placed near the interface. The advantage of the DPSM technique is that it not only avoids the paraxial

![a](Sinusoidally corrugated waveguide between two transducers—geometry for the DPSM analysis. (b) Sinusoidally corrugated waveguide showing different parameters considered for the analytical solution.)
approximation it also does not require any ray tracing. The DPSM technique can handle complex geometries of the interface and the transducer. All methods developed before DPSM for the ultrasonic field radiation modeling near an interface requires ray tracing. The ray tracing technique becomes cumbersome in the presence of multiple interfaces while such geometries can be easily modeled by the DPSM technique (Banerjee, Kundu, and Placko, 2006).

The DPSM technique for ultrasonic field modeling was first developed by Placko and Kundu (2001). They successfully used this technique to model ultrasonic fields in a homogeneous fluid, and in a nonhomogeneous fluid with one interface (Lee et al., 2002; Placko et al., 2002) as well as multiple interfaces (Banerjee, 2005). The interaction between two transducers for different transducer arrangements and source strengths, placed in a homogeneous fluid, has been studied by Ahmad et al. (2003). The scattered ultrasonic field generated by a solid scatterer of finite dimension placed in a homogeneous fluid has also been modeled by the DPSM technique (Placko et al., 2003). Recently the method has been extended to model the phased array transducers (Ahmad et al., 2005). All these works modeled the ultrasonic field in a fluid medium. Only recently, the method has been extended to model the ultrasonic fields inside solid structures with planar boundaries (Banerjee and Kundu, 2006b). In the current paper the ultrasonic field in a sinusoidally corrugated waveguide has been modeled by the DPSM technique. The details of this modeling, as described in the subsequent sections, are quite challenging because of the continuous variations of the curvature of the fluid-solid interface. Numerical results for corrugated waveguides showing forward and backward propagations of guided waves depending on the degree of corrugation are reported here for the first time in the literature.

II. THEORY

A. Problem geometry

A symmetrically corrugated sinusoidal waveguide is considered. On two sides of the waveguide Fluid 1 and Fluid 2 are used as the coupling fluids that transmit ultrasonic waves from the ultrasonic transducers to the waveguide [see Fig. 1(a)]. To model the ultrasonic field inside the waveguide and the fluid, the DPSM technique (Placko et al., 2001; Lee et al., 2002; Ahmad et al., 2005) is employed. Following the basics of the DPSM technique, four sets of point sources are distributed on both sides of the waveguide, as shown in Fig. 1(a). Point sources are also distributed behind the transducer faces. Transducer sources are denoted as \(A_s \) and \(A_R \) in Fig. 1(a). \(A_s, A_R, A_1, A_2, A_1^*, A_2^* \) are the source strength vectors for the sources distributed near the transducer surfaces and two interfaces [see Fig. 1(a)]. The period of corrugation of the sinusoidal waveguide is \(D \) and the depth of corrugation is equal to \(e \) [see Fig. 1(b)].

B. Matrix formulation

The particle velocity and pressure in fluids at the interfaces can be expressed in matrix form (Kundu, 2004). Let \(T_1 \) and \(T_2 \) be two different sets of target points in the fluid below and above the Interfaces 1 and 2, respectively. The velocity at the target points can be written as

\[
V_{T_1} = M_{(T_1)} A_s + M_{(T_1)} A_1,
\]

(1)

\[
V_{T_2} = M_{(T_2)} A_R + M_{(T_2)} A_2^*.
\]

(2)

Similarly, the pressure fields at the target points are

\[
PR_{T_1} = PR_{T_1} + PR_{T_1} = Q_{(T_1)} A_s + Q_{(T_1)} A_1,
\]

(3)

\[
PR_{T_2} = PR_{T_2} + PR_{T_2} = Q_{(T_2)} A_R + Q_{(T_2)} A_2^*.
\]

(4)

Elements of the matrices written in Eqs. (1)–(4) are given in Kundu (2004).

Boundary surfaces of the sinusoidal waveguide are nonplanar. At every point of the interface, normal stress and normal displacement are to be defined to satisfy the continuity conditions across the interface. The direction cosine of the sinusoidal waveguide at any point on the surface can be defined as \(n = (n_1 e_1 + n_2 e_2) \). Projections of unit normal \((n) \) on \(x_1 \) and \(x_2 \) axes are given in Eqs. (5) and (6), respectively,

\[
n_1 = \frac{2 \pi e}{D} \sin \left(\frac{2 \pi x_1}{D} \right) \left[\frac{2 \pi e}{D} \sin \left(\frac{2 \pi x_1}{D} \right) + 1 \right]^{1/2},
\]

(5)

\[
n_2 = \frac{1}{\left[\frac{2 \pi e}{D} \sin \left(\frac{2 \pi x_1}{D} \right) + 1 \right]^{1/2}}.
\]

(6)

Point sources needed for modeling isotropic solids are different from those used for fluid modeling. Every point source for the solid modeling has three different force components in three mutually perpendicular directions. For a point source acting at \(y \) in an isotropic solid, the stresses developed at point \(x \) have been expressed by Banerjee (2005) and Banerjee and Kundu (2006b). Assuming a point force acting along the \(x_3 \) direction, stresses at point \(x \) on the boundary of the sinusoidal waveguide can be written as

\[
\sigma^j = \begin{bmatrix}
\sigma_{11}^j & \sigma_{12}^j & \sigma_{13}^j \\
\sigma_{21}^j & \sigma_{22}^j & \sigma_{23}^j \\
\sigma_{31}^j & \sigma_{32}^j & \sigma_{33}^j
\end{bmatrix}.
\]

(7)

The transformation matrix at point \(x \) is

\[
T = \begin{bmatrix}
n_2 & -n_1 & 0 \\
n_1 & n_2 & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

(8)

Therefore, transformed stresses at point \(x \) is
\[\sigma^{ij} = T \sigma^T \]

Considering the same point force along the sinusoidal surface, the normal stress and the shear stress components can be defined as

\[S_{22}' = \sum_{m=1}^{M} \left[(\sigma_{22}'^1)^m P_m^1 + (\sigma_{22}'^2)^m P_m^2 + (\sigma_{22}'^3)^m P_m^3 \right] \]
\[= \sum_{m=1}^{M} s_{22}' m \left(\frac{P}{4 \pi} \right)^m , \]
\[S_{21}' = \sum_{m=1}^{M} \left[(\sigma_{21}'^1)^m P_m^1 + (\sigma_{21}'^2)^m P_m^2 + (\sigma_{21}'^3)^m P_m^3 \right] \]
\[= \sum_{m=1}^{M} s_{21}' m \left(\frac{P}{4 \pi} \right)^m , \]
\[S_{23}' = \sum_{m=1}^{M} \left[(\sigma_{23}'^1)^m P_m^1 + (\sigma_{23}'^2)^m P_m^2 + (\sigma_{23}'^3)^m P_m^3 \right] \]
\[= \sum_{m=1}^{M} s_{23}' m \left(\frac{P}{4 \pi} \right)^m . \]

Displacements at point \(x \) generated by a point source acting at point \(y \) in an isotropic solid can be obtained from Mal and Singh (1991). The displacements at \(x \) due to the point force acting along the \(x_j \) direction are denoted as \(G_{1j} \), \(G_{2j} \), and \(G_{3j} \). Considering the same point force along the \(x_j \) direction, the normal displacement of the sinusoidal surface at \(x \) can be written as

\[u_n = G_{1j} n_1 + G_{2j} n_2 + G_{3j} n_3. \]

Considering a set of \(M \) point sources distributed on the interface, the normal displacement at point \(x \) on the sinusoidal surface can be written as

\[u_n = \sum_{m=1}^{M} \left[(G_{11} n_1 + G_{22} n_2)^m P_m^1 + (G_{12} n_1 + G_{22} n_2)^m P_m^2 + (G_{13} n_1 + G_{23} n_2)^m P_m^3 \right] = \sum_{m=1}^{M} u_m P_m. \]

Let \(T \) be a set of target points in the solid. Normal displacements at these points \((T) \) on the sinusoidal surface can be written in the following form:

\[u^{\prime \prime}_{1T} = D S_{11T} A_{1}^* + D S_{12T} A_{2}, \]

Similarly transformed normal stress and shear stresses at the target points \((T) \) on the sinusoidal surface can be written as

\[s^{\prime \prime}_{11T} = S^{\prime \prime}_{11T} A_{1}^* + S^{\prime \prime}_{12T} A_{2}, \]

\[s^{\prime \prime}_{12T} = S^{\prime \prime}_{12T} A_{1}^* + S^{\prime \prime}_{13T} A_{2}, \]

\[s^{\prime \prime}_{13T} = S^{\prime \prime}_{13T} A_{1}^* + S^{\prime \prime}_{14T} A_{2}. \]

Matrices \(D S_{1S} \) and \(S^{\prime \prime}_{1S} \) are given in the Appendix [see Eqs. (A1) and (A2)]. Similarly \(S^{\prime \prime}_{1S} \) and \(S^{\prime \prime}_{2S} \) can be expressed. Subscripts \(T \) and \(S \) denote sets of target and source points, respectively.

In a fluid medium, the displacement components at point \(x \) generated by a point source at \(y \) are expressed as follows (Banerjee, 2005):

\[u_1 = \frac{1}{4 \pi \rho \omega} \left(\frac{1}{r} e^{i k_r} R_1 - e^{i k_j} \frac{R_1}{r} \right), \]
\[u_2 = \frac{1}{4 \pi \rho \omega} \left(\frac{1}{r} e^{i k_r} R_2 - e^{i k_j} \frac{R_2}{r} \right), \]
\[u_3 = \frac{1}{4 \pi \rho \omega} \left(\frac{1}{r} e^{i k_r} R_3 - e^{i k_j} \frac{R_3}{r} \right), \]

where \(R_j = (x_j - y_j)/r \), \(j \) takes values 1, 2, and 3.

Using the direction cosines \((n_l) \) of the normal vector to the corrugated surface, the displacement component normal to the corrugated interface at point \(x \) can be written as

\[\sum_{m=1}^{M} u_m P_m. \]

Following the same rule in presence of transducers [see Fig. 1(a)], the displacement of the fluid at Interfaces 1 and 2 can be written as

\[U_{n1} = [(DF_{21} n_1) + (DF_{11} n_1)]A_{S} + [(DF_{21} n_1) + (DF_{11} n_1)]A_{T}, \]

\[U_{n2} = [(DF_{21} n_2) + (DF_{12} n_2)]A_{S} + [(DF_{21} n_2) + (DF_{12} n_2)]A_{T}, \]

or

\[U_{n1} = DF_{n1} A_{S} + DF_{n1} A_{T}, \]

\[U_{n2} = DF_{n2} A_{S} + DF_{n2} A_{T}. \]

Matrix \(DF_{nS} \) is given in the Appendix [Eq. (A3)], where \(T \) and \(S \) denote sets of target and source points, respectively.

Let us consider a set of target points on “Interface 1” (then the set of target points will be denoted as \(J1 \)) and the transformed normal stress and shear stress matrices for the referenced target points can be written as

\[s^{\prime \prime}_{11T} = S^{\prime \prime}_{11T} A_{1}^* + S^{\prime \prime}_{12T} A_{2}, \]

\[s^{\prime \prime}_{12T} = S^{\prime \prime}_{12T} A_{1}^* + S^{\prime \prime}_{13T} A_{2}. \]
Similarly, on Interface 2, the set of target points are denoted as I_2 and the transformed normal and shear stresses on the sinusoidal interface can be written as

\[
\mathbf{s22}'_{I_2} = \mathbf{s22}'_{I_21}A_1^* + \mathbf{s22}'_{I_22}A_2^*.
\]

(26a)

\[
\mathbf{s21}'_{I_2} = \mathbf{s21}'_{I_21}A_1^* + \mathbf{s21}'_{I_22}A_2^*.
\]

(26b)

\[
\mathbf{s23}'_{I_2} = \mathbf{s23}'_{I_21}A_1^* + \mathbf{s23}'_{I_22}A_2^*.
\]

(26c)

Inside the solid at interfaces I_1 and I_2, the normal displacements can be written as

\[
\mathbf{u}_{I_1} = \mathbf{DSn}_{(I_1)^*}A_1^* + \mathbf{DSn}_{(I_2)^2}A_2^*,
\]

(27)

\[
\mathbf{u}_{I_2} = \mathbf{DSn}_{(I_2)^1}A_1^* + \mathbf{DSn}_{(I_2)^2}A_2^*.
\]

(28)

C. Boundary and continuity conditions

Across the fluid-solid interface the displacement component normal to the interface should be continuous. Also, at the interface, the transformed normal stress ($\mathbf{s22}'$) in the solid and pressure in the fluid should be continuous. Whereas, the shear stresses at the interface must vanish. Let the normal velocities at the transducer faces be \mathbf{V}_{S0} and \mathbf{V}_{R0}, for the lower and upper transducers, respectively. The boundary conditions at the transducer faces are

\[
\mathbf{M}_{S5}A_5 + \mathbf{M}_{S1}A_1 = \mathbf{V}_{S0},
\]

(29)

\[
\mathbf{M}_{R2}A_2^* + \mathbf{M}_{RR}A_R^* = \mathbf{V}_{R0}.
\]

(30)

At the interfaces, from the continuity of the normal stress,

\[
Q_{15}A_5 + Q_{11}A_1 = -\mathbf{s22}'_{I_11}A_1^* - \mathbf{s22}'_{I_12}A_2^*,
\]

(31)

\[
Q_{22}A_2^* + Q_{2R}A_R^* = -\mathbf{s22}'_{I_21}A_1^* - \mathbf{s22}'_{I_22}A_2^*.
\]

(32)

Continuity of the normal displacement gives

\[
\mathbf{DFn}_{15}A_5 + \mathbf{DFn}_{11}A_1 = \mathbf{DSn}_{11}A_1^* + \mathbf{DSn}_{12}A_2^*,
\]

(33)

\[
\mathbf{DFn}_{22}A_2^* + \mathbf{DFn}_{2R}A_R^* = \mathbf{DSn}_{21}A_1^* + \mathbf{DSn}_{22}A_2^*,
\]

(34)

and from the vanishing shear stress condition at the fluid-solid interface,

\[
\mathbf{s21}'_{I_11}A_1^* + \mathbf{s21}'_{I_12}A_2^* = 0,
\]

(35)

\[
\mathbf{s23}'_{I_11}A_1^* + \mathbf{s23}'_{I_12}A_2^* = 0.
\]

(36)

Equations (29)–(36) can be written in matrix form,

\[
\begin{bmatrix}
\mathbf{M}_{S5} & \mathbf{M}_{S1} & 0 & 0 & 0 & 0 \\
Q_{15} & Q_{11} & \mathbf{s22}'_{I_11} & \mathbf{s22}'_{I_12} & 0 & 0 \\
\mathbf{DFn}_{15} & \mathbf{DFn}_{11} & -\mathbf{DSn}_{11} & -\mathbf{DSn}_{12} & 0 & 0 \\
0 & 0 & \mathbf{s21}'_{I_11} & \mathbf{s21}'_{I_12} & 0 & 0 \\
0 & 0 & \mathbf{s23}'_{I_11} & \mathbf{s23}'_{I_12} & 0 & 0 \\
0 & 0 & \mathbf{s23}'_{I_11} & \mathbf{s23}'_{I_12} & 0 & 0 \\
0 & 0 & \mathbf{s22}'_{I_21} & \mathbf{s22}'_{I_22} & Q_{22} & Q_{2R} \\
0 & 0 & -\mathbf{DSn}_{21} & -\mathbf{DSn}_{22} & \mathbf{DFn}_{22} & \mathbf{DFn}_{2R} \\
0 & 0 & 0 & 0 & \mathbf{M}_{R2} & \mathbf{M}_{RR}
\end{bmatrix}
\begin{bmatrix}
\mathbf{A}_S \\
\mathbf{A}_1 \\
\mathbf{A}_1^* \\
\mathbf{A}_2 \\
\mathbf{A}_2^* \\
\mathbf{A}_R
\end{bmatrix}
=
\begin{bmatrix}
\mathbf{V}_{S0} \\
\mathbf{0} \\
\mathbf{0}
\end{bmatrix},
\]

or

\[
\{\mathbf{V}\} = \{\mathbf{M}^{-1}\mathbf{T}\}\{\mathbf{A}\}.
\]

(37)

\[
\{\mathbf{A}\} = \{\mathbf{MT}\}^{-1}\{\mathbf{V}\}.
\]

(39)

After calculating the source strengths, the pressure, velocity, stress, and displacement values at any point can be obtained.

E. Analytical solution of wave propagation in sinusoidally corrugated waveguide

The analytical solution for the complete problem geometry including the waveguide and two transducers as shown in Fig. 1(a) is not available. However, the problem of guided wave propagation in a corrugated plate as shown in Fig. 1(b)
can be solved analytically. Wave propagation in corrugated waveguides with small corrugation, where the perturbation method can be applied, was first studied by Nayfeh et al. (1978). This solution cannot be used in many practical applications when the corrugation height is not necessarily small in comparison to the plate thickness. The analysis of wave propagation in electromagnetic waveguides with a high degree of corrugation was studied by Boström (1983). Later, Standström (1986) discussed stop bands in sinusoidally corrugated waveguides by applying the null-field approach, developed by Waterman (1975). Standström (1987) compared different techniques for the corrugated plate analysis.

The elastic wave propagation analysis near sinusoidally corrugated fluid-solid interface by the modal superposition technique has been discussed by Fokkemma (1980). Although a number of researchers have studied the electromagnetic wave propagation near surface grating and in corrugated waveguides, not many investigators have studied the problem of elastic wave propagation in corrugated plates. The problem of elastic wave propagation in a sinusoidally corrugated waveguide has been considered by El-Bahrawy (1994a) for only symmetric Rayleigh-Lamb modes. A classical modal technique was adopted for this analysis. In El-Bahrawy’s study the dispersion equation was developed for only symmetric modes. Stop bands and pass bands of the symmetric modes were studied extensively by El-Bahrawy.

In this paper the analytical solution is adopted from El-Bahrawy’s (1994a) work. The dispersion relation for the symmetric modes in a sinusoidally corrugated waveguide is presented in Eq. (40). The parameters \((\varepsilon, D, h)\) used in the following equations are defined in Fig. 1(b):

\[
T_{ij}\alpha_j = 0. \quad (40a)
\]

Therefore, for nontrivial solutions of \(\alpha_j\),

\[
\text{Det}[T] = 0, \quad (40b)
\]

where

\[
T_{1n1m} = -\frac{D}{2}\left(\frac{k_n}{\beta_n}\right)^2\left[\left(4(n-m)\frac{\pi}{D}\right)k_n + 2\beta_n^2 - k_n^2\right] J_{n-m}(\varepsilon\beta_n),
\]

\[
T_{1n2m} = \left(\frac{n-m}{\eta}\right)^2\left[k_n^2 - 2\beta_n^2 + Dk_n\theta_n\right] J_{n-m}(\varepsilon\beta_n),
\]

\[
T_{2n1m} = -k_n\left(\frac{n-m}{\beta_n}\right)^2\left[k_n^2 - 2\beta_n^2 + Dk_n\theta_n\right] J_{n-m}(\varepsilon\beta_n),
\]

\[
T_{2n2m} = \left(\frac{n-m}{\beta_n}\right)^2\left[k_n^2 - 2\beta_n^2 + Dk_n\theta_n\right] J_{n-m}(\varepsilon\beta_n).
\]

In the above equations, if \(n\) and \(m\) take values 1, 2, 3, ..., \(2pI\), \((2pI+1)\).

The displacement function can be written as

\[
u_i = w_{kj}\alpha_j, \quad (41)
\]

where \(k\) takes values 1, 2, and 3.

The displacement functions have been given by El-Bahrawy (1994a). Equation (40) is solved for a particular frequency and the eigenvectors corresponding to the wave number solutions are calculated. The eigenvector solutions are substituted in Eq. (41) to get displacement mode shape in the waveguide for a specific mode.

The above analytical solution is for the plane wave propagation in the waveguide. However, the wave field in the waveguide for the DPSM modeling is generated by two bounded acoustic beams. Therefore, perfect matching between the DPSM generated results and the analytical mode shapes is not expected. Only a qualitative comparison between these two results is presented in the following section. The symmetric transducer placement in the DPSM formulation generates only the symmetric modes in the waveguide. Hence, only the symmetric mode solutions of the analytical formulation are compared with the DPSM results.

III. NUMERICAL IMPLEMENTATION

MATLAB 7.1 R-14 and Lapack library functions are used to generate the numerical results based on the formulation presented above. The numerical results are presented for the corrugated aluminum waveguides with Lamé constants \(\lambda\) and \(\mu\) equal to 54.55 and 24.95 GPa, respectively, and density equal to 2.7 gm/cm\(^3\). P-wave and S-wave speeds \((c_p = 6220\, m/s\) and \(c_s = 3040\, m/s\)) in the material are obtained from the above elastic constants. Four different waveguides are considered in the analysis. Dimensions of the waveguides are presented in Table I. Comparisons between DPSM and analytical solutions are presented for Waveguide 2.

Equation (40) is solved numerically for two different frequencies from the pass band frequencies [El-Bahrawy (1994a)]. The ultrasonic fields for these frequencies are also generated by the DPSM technique. The absolute values of the horizontal and vertical displacement components computed by these two methods are presented in Figs. 2(a) and 2(b), respectively. The plots show the displacement variations along the plate thickness. The displacement fields are normalized with respect to the horizontal displacement at \(x_2=0\) [see Fig. 1(b)]. For comparison purposes the displacement field from the DPSM formulation is generated away from the transducers to capture the propagating guided wave modes away from the zone affected by the striking ultrasonic beams. The displacement fields corresponding to the first two symmetric modes generated from Eq. (41) are multiplied by

<table>
<thead>
<tr>
<th>Waveguide</th>
<th>(2h)</th>
<th>(\varepsilon)</th>
<th>(D)</th>
<th>(\varepsilon/D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waveguide 1</td>
<td>10</td>
<td>0.5</td>
<td>10</td>
<td>0.05</td>
</tr>
<tr>
<td>Waveguide 2</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>Waveguide 3</td>
<td>10</td>
<td>1.5</td>
<td>10</td>
<td>0.15</td>
</tr>
<tr>
<td>Waveguide 4</td>
<td>10</td>
<td>2</td>
<td>10</td>
<td>0.2</td>
</tr>
</tbody>
</table>
two weight factors and added to approximately match the DPSM results. The weighted displacement field is calculated as

\[u_i = w_1 u_i^1 + w_2 u_i^2, \tag{42} \]

where \(u_i^1 \) and \(u_i^2 \) are displacement components along the \(x_i \) direction generated by the fundamental and first higher symmetric modes, respectively. Results presented in Fig. 2(b) are generated with \(w_1 = 0.68 \) and \(w_2 = 0.32 \). Clearly, the DPSM results are qualitatively in good agreement with the analytical solution.

Ultrasonic fields in four different waveguides (see Table I) are generated by the DPSM technique. A normal incidence of the ultrasonic beam on a corrugation peak of the waveguide is considered first and then the transducers are inclined at two different angles. Results for three different orientations of the transducers are presented. Figure 3 shows different transducer orientations. The transducer frequency is set at 1 MHz. Figures 4 and 5 show the horizontal \((u_1) \) and vertical \((u_2) \) displacement fields, respectively, inside the waveguides. In these two figures the displacement fields are presented for Waveguides 2, 3, and 4 (see Table I for their dimensions). Figures 4(a), 4(b), and 4(c) show the \(u_1 \) displacement for normal incidence [transducer orientation is shown in Fig. 5(a)] in Waveguides 2, 3, and 4, respectively. Figures 4(d),

FIG. 2. Horizontal and vertical displacement variations at 0.35 MHz along the plate thickness obtained by (a) DPSM and (b) analytical solution techniques.

FIG. 3. Transducer orientations (a) Orientation—I: Normal Incidence. (b) Orientation—II: 30° inclination. (c) Orientation—III: 45° inclination.
4(e), and 4(f) show the u_1 displacement for 30° striking angle (transducer orientation is shown in Fig. 3(b)) in Waveguides 2, 3, and 4, respectively. Similarly, Figs. 5(a), 5(b), and 5(c) show the u_2 displacement for normal incidence in Waveguides 2, 3, and 4, respectively, and Figs. 5(d), 5(e), and 5(f) show the u_2 displacement for a 30° striking angle in Waveguides 2, 3, and 4, respectively. It can be seen from Figs. 4 and 5 that the ultrasonic waves in Waveguide 2 [Figs. 4(d) and 5(d)] propagate in the forward direction, or in other words, in the same direction as the horizontal component of
the striking beams. In Waveguide 4 [Figs. 4(f) and 5(f)] ultrasonic waves in the waveguide propagate in the backward direction, or, in other words, opposite to the direction of the striking beams. In Waveguide 3 [Figs. 4(e) and 5(e)] the wave propagates in both directions. The phenomenon of the wave propagation in the backward direction in Waveguides 4 and 3 is called “back-propagation.” The back-propagation phenomenon can be more clearly seen in Fig. 6. Figure 6 shows amplitudes of u_x displacement along the central plane of the waveguides. In this figure the displacement variations...
in all four waveguides listed in Table I are shown. These displacement fields are generated for three different transducer orientations, as shown in Fig. 3. Figure 6 clearly shows the back-propagation of ultrasonic waves [Figs. 6(d) and 6(f)] for large corrugation ($e/D=0.2$ and 0.15) and forward propagation [Figs. 6(c) and 6(e)] for small corrugation ($e/D=0.05$ and 0.1) when the ultrasonic beam strikes the plate at an angle. The e/D ratio was carefully changed between 0.1 and 0.15 to find out for what value of this ratio the back-propagation starts to dominate. It is found that for the inclined incidence of the ultrasonic bounded beam on a corrugation peak when $e/D=0.11$ the ultrasonic waves propagate in both directions with almost equal strength. For $e/D>0.11$ the back-propagation dominates and for $e/D<0.11$ the forward propagation dominates. When the signal frequency in Figs. 4–6 was changed from 1 to 2 MHz, the details of the figures changed to some extent, however, the general conclusion about the forward and backward propagation phenomenon did not change. For 2 MHz plots also (not shown here) it was observed that for $e/D>0.11$ the back-propagation dominates and for $e/D<0.11$ the forward propagation dominates.

IV. CONCLUSION

Elastic wave propagation in corrugated plates is modeled by the DPSM technique. Displacement mode shapes
generated by DPSM are compared with those obtained analytically. Good qualitative matching between the two sets of mode shapes is obtained. This analysis shows that when bounded acoustic beams strike a corrugated plate at an angle, the elastic waves can propagate in both forward and backward directions in the waveguide depending on the degree of corrugation. The back propagation of ultrasonic waves in corrugated waveguides for large corrugation depth is reported for the first time in this paper.

ACKNOWLEDGMENTS

The authors thank Dr. A. Boström and Dr. A. El-Bahrawy, Chalmers University of Technology, Division of Mechanics, Göteborg, Sweden and Dr. A. K. Mal, University of California, Los Angeles, for sending valuable research material on this subject. This research was partially funded by a grant from the National Science Foundation under Contract No. CMS-9901221.

APPENDIX:

Matrices expressions:

\[
D_{SnTS} = \begin{bmatrix}
G_{1}^{1} & G_{1}^{2} & G_{1}^{3} & \cdots & G_{1}^{M-1} & G_{1}^{M} \\
G_{1}^{2} & G_{1}^{3} & G_{1}^{4} & \cdots & G_{1}^{M-1} & G_{1}^{M} \\
G_{1}^{3} & G_{1}^{4} & G_{1}^{5} & \cdots & G_{1}^{M-1} & G_{1}^{M} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
G_{N-1}^{1} & G_{N-1}^{2} & G_{N-1}^{3} & \cdots & G_{N-1}^{M-1} & G_{N-1}^{M} \\
G_{N}^{1} & G_{N}^{2} & G_{N}^{3} & \cdots & G_{N}^{M-1} & G_{N}^{M} \\
\end{bmatrix}^{Nx3M}
\]

\[
S_{22TS} = \begin{bmatrix}
S_{11}^{1} & S_{11}^{2} & S_{11}^{3} & \cdots & S_{11}^{M-1} & S_{11}^{M} \\
S_{12}^{1} & S_{12}^{2} & S_{12}^{3} & \cdots & S_{12}^{M-1} & S_{12}^{M} \\
S_{13}^{1} & S_{13}^{2} & S_{13}^{3} & \cdots & S_{13}^{M-1} & S_{13}^{M} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
S_{N-1,2}^{1} & S_{N-1,2}^{2} & S_{N-1,2}^{3} & \cdots & S_{N-1,2}^{M-1} & S_{N-1,2}^{M} \\
S_{N,2}^{1} & S_{N,2}^{2} & S_{N,2}^{3} & \cdots & S_{N,2}^{M-1} & S_{N,2}^{M} \\
\end{bmatrix}^{Nx3M}
\]

\[
D_{FnTS} = \begin{bmatrix}
g(R_{11}^{1},r_{1}^{1}) & g(R_{11}^{2},r_{1}^{1}) & g(R_{11}^{3},r_{1}^{1}) & \cdots & g(R_{11}^{M-1},r_{1}^{1}) & g(R_{11}^{M},r_{1}^{1}) \\
g(R_{12}^{1},r_{2}^{1}) & g(R_{12}^{2},r_{2}^{1}) & g(R_{12}^{3},r_{2}^{1}) & \cdots & g(R_{12}^{M-1},r_{2}^{1}) & g(R_{12}^{M},r_{2}^{1}) \\
g(R_{13}^{1},r_{3}^{1}) & g(R_{13}^{2},r_{3}^{1}) & g(R_{13}^{3},r_{3}^{1}) & \cdots & g(R_{13}^{M-1},r_{3}^{1}) & g(R_{13}^{M},r_{3}^{1}) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
g(R_{N,1}^{1},r_{N}^{1}) & g(R_{N,1}^{2},r_{N}^{1}) & g(R_{N,1}^{3},r_{N}^{1}) & \cdots & g(R_{N,1}^{M-1},r_{N}^{1}) & g(R_{N,1}^{M},r_{N}^{1}) \\
\end{bmatrix}^{NxM}
\]

where

\[
g\left(R_{in}^{m},r_{n}^{m}\right) = \frac{1}{\rho_{a}c_{0}^{2}} \left[\left(\frac{1}{r_{n}^{m}} - \frac{1}{r_{n}^{m}} \right) \right]^{1/2} \left(\frac{e^{ikR_{in}^{m}r_{n}^{m} \rho_{a}c_{0}^{2}}}{\left(r_{n}^{m}\right)^{2}} \right) n_{2} + \left(\frac{1}{r_{n}^{m}} - \frac{1}{r_{n}^{m}} \right) n_{1} \right]
\]

\[R_{in}^{m} = (x_{n}^{m} - y_{n}^{m})/r_{n}^{m}\] and \(m\) take values 1, 2, and 3, except an imaginary quantity.

