Electrochemical Capture of CO$_2$ from Natural Gas using a High-Temperature Ceramic-Carbonate Membrane

Jingjing Tong  
*University of South Carolina - Columbia, tongj2@mailbox.sc.edu*

Lingling Zhan

Jie Fang  
*University of South Carolina - Columbia, jief@email.sc.edu*

Minfang Han

Kevin Huang  
*University of South Carolina - Columbia, huang46@cec.sc.edu*

Follow this and additional works at: [https://scholarcommons.sc.edu/emec_facpub](https://scholarcommons.sc.edu/emec_facpub)

Part of the Ceramic Materials Commons, and the Other Mechanical Engineering Commons

**Publication Info**

© The Electrochemical Society, Inc. 2015. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in Journal of The Electrochemical Society.

Publisher’s Version: [http://dx.doi.org/10.1149/2.0481504jes](http://dx.doi.org/10.1149/2.0481504jes)


This Article is brought to you by the Mechanical Engineering, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact digres@mailbox.sc.edu.
Electrochemical Capture of CO$_2$ from Natural Gas Using a High-Temperature Ceramic-Carbonate Membrane

Jingjing Tong, Lingling Zhang, Jie Fang, Minfang Han, and Kevin Huang

This study reports the first investigation of using a ceramic-carbonate dual-phase membrane to electrochemically separate CO$_2$ from a simulated natural gas. The CO$_2$ permeation flux density was systematically studied as a function of temperature, CO$_2$ partial pressure and time. As expected, the flux density was observed to increase with temperature and CO$_2$ partial pressure. Long-term stability test showed that flux density experienced an initial performance-improving “break-in” period followed by a slow decay. Post-test microstructural analysis suggested that a gradual loss of carbonate during the test could be the cause of the flux-time behavior observed.

© The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/2.0481504jes] All rights reserved.

Manuscript submitted November 17, 2014; revised manuscript received January 7, 2015. Published January 24, 2015.

Natural gas is a cleaner burning and flexible alternative to other fossil fuels, and is widely used in power generation, residential, industrial, and transportation sectors. Sources of natural gas include conventional onshore and offshore wells and unconventional wells that rely on stimulation technologies to enhance natural gas recovery in the reservoir. Examples of the latter include hydraulic fracturing in shale and water removing in coal bed methane (CBM) wells.

The composition of natural gas varies considerably with sources, and even within a source. Other than minor amounts of H$_2$, H$_2$O, N$_2$, He and VOC (volatile organic compounds), CO$_2$ concentration in a natural gas can vary from 0 to 70% of methane. As an acidic gas, CO$_2$ must be removed prior to transportation in order to protect pipelines. During the removal process, avoiding accidental CH$_4$ release to the atmosphere is also important since CH$_4$ is a heat-trapping gas 86 times more powerful than CO$_2$. Therefore, a safe, efficient and low-cost separation process for CO$_2$ removal from raw natural gas is technologically and environmentally important. The conventional means of removing CO$_2$ from a CO$_2$/CH$_4$ mixture is based on reversible sorbent/solvent adsorption/absorption processes. Pressure swing adsorption (PSA) using zeolite, metal organic framework (MOF) and carbon nanotube are some examples of sorbents used to separate CO$_2$ from CH$_4$. Amine-based liquids such as MEA or MDEA are examples of solvents employed to capture CO$_2$ from CH$_4$, but often with high energy penalty and CH$_4$ loss.

Recently, organic and inorganic membranes have received much attention as an effective means of separating CO$_2$ from CH$_4$. For instance, Peters and co-workers utilized the PVAm/PVA membrane to remove CO$_2$ from CH$_4$. The CO$_2$ permeance reached 3.7×10$^{-8}$ mol·s$^{-1}$·m$^{-2}$·Pa$^{-1}$ with a selectivity of 35–40. Xie and co-workers studied the alumina-supported cobalt-adeninate MOF membranes for CO$_2$/CH$_4$ separation, and achieved a high CO$_2$ permeance 4.55×10$^{-6}$ mol·s$^{-1}$·m$^{-2}$·Pa$^{-1}$ but with a low selectivity of 3.2. Venna and Carreon further reported a high CO$_2$ permeance 2.4×10$^{-5}$ mol·s$^{-1}$·m$^{-2}$·Pa$^{-1}$ under a pressure differential of 40 KPa using a zeolite imidazolate framework (ZIF) membrane, but with a selectivity of 5.1. As well documented in the literature, the trade-off between permeability and selectivity (or so called “Robeson Upper Bound”) is a major barrier for the aforementioned membranes to overcome. Furthermore, the requirement for high-pressure feed and low operating-temperature makes the organic membranes only suitable for high-pressure and low-temperature CO$_2$ separation from streams such as pre-combustion products where pressure of 25–30 bar and temperature of <50°C are typically present. For post-combustion carbon capture, where near ambient-pressure and high-temperature CO$_2$-containing streams are present, the membrane technology is less advantageous compared to its solvent and sorbent rivals.

Very recently, we as well as other groups have developed a new type of membranes based on electrochemical principles. The membrane is composed of an oxide-ion conducting ceramic and carbonate-ion conducting carbonate phase, forming a mixed oxide-ion and carbon-ion conductor (MOCC). The membranes have been demonstrated with high-flux and high-selectivity in separating CO$_2$ from a mixture of CO$_2$/N$_2$ (for example, CO$_2$ flux = 0.13 ml·cm$^{-2}$·min$^{-1}$ with a membrane thickness of 1.32 mm at 650°C and CO$_2$/H$_2$/N$_2$ for example, CO$_2$ flux = 1.84 ml·cm$^{-2}$·min$^{-1}$ with a membrane thickness of 1.2 mm at 700°C). Here we report that MOCC membranes can also separate CO$_2$ from CH$_4$ with high-flux and selectivity even under the ambient pressure. The oxide-ion conducting ceramic matrix used in this study was a samarium doped ceria (SDC), within which a carbonate-ion conducting eutectic mixture of Li$_2$CO$_3$·Na$_2$CO$_3$ was held. A schematic illustrating the overall CO$_2$ permeation process through a MOCC membrane with CH$_4$/CO$_2$ as the feeding gas and helium as the sweeping gas is shown in Fig. 1. The driving force for the CO$_2$ separation is the chemical potential (partial pressure) of CO$_2$ existing across the MOCC membrane. At the CH$_4$/CO$_2$/MOCC interface, CO$_2$ reacts with O$^{2-}$ to form CO$_3^{2-}$. The formed CO$_3^{2-}$ then transports though the molten carbonate phase toward the MOCC/Helium interface where a reverse reaction occurs to release CO$_2$ and O$^{2-}$.

<table>
<thead>
<tr>
<th>Natural gas type</th>
<th>CO$_2$ concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinary natural gas</td>
<td>0–70</td>
</tr>
<tr>
<td>Shale gas</td>
<td>0–12</td>
</tr>
<tr>
<td>Gas hydrates</td>
<td>0–1</td>
</tr>
<tr>
<td>Coal bed</td>
<td>30–55</td>
</tr>
<tr>
<td>Biogas from organic waste</td>
<td>30–45</td>
</tr>
<tr>
<td>Biogas from landfill</td>
<td>30–60</td>
</tr>
<tr>
<td>Biogas from sewage digester</td>
<td>30–45</td>
</tr>
</tbody>
</table>

ECS Electrochemical Society Active Member.
E-mail: huang46@ece.sc.edu, haminfang@sina.com
Experimental

Fabrication of MOCC membranes.— The fabrication of MOCC membranes includes two steps. The first step is the making of porous ceramic SDC matrix. To maximize the homogeneity and minimize the size of the pores, a “co-precipitation” and “sacrificial template” technique was employed. The porosity of the SDC matrix fabricated for this study was controlled to be 0.4. Thus fabricated porous matrix was then infiltrated at 650°C with eutectic molten carbonates of Li2CO3 and Na2CO3 in a molar ratio of 52:48, forming a dense ceramic SDC matrix. To maximize the homogeneity and minimize the size of the pores, a “co-precipitation” and “sacrificial template” technique was employed. The porosity of the SDC matrix fabricated for this study was controlled to be 0.4. Thus fabricated porous matrix was then infiltrated at 650°C with eutectic molten carbonates of Li2CO3 and Na2CO3 in a molar ratio of 52:48, forming a dense MOCC membrane. Details about the procedure can be found in our previous work.30,31

CO2 permeation measurement.— The CO2 permeation measurements on MOCC membranes were performed using a homemade test station and established test protocol, both of which can also be found in our previous work.29–31 The button cell membranes used to evaluate the CO2 transport in MOCC.30 One possible reason for the lowered Ea is the electronic conduction induced by the reduction of Ce4+ at low partial pressure of oxygen (P02) exposed to the membrane. Overall, at 700°C, JCO2 reaches 0.11 ml·min−1·cm−2, a moderately high flux-density for the membrane thickness and operating temperature tested.

The effect of CO2 partial pressure.— The CO2 partial pressure on CO2 flux was investigated by varying mass flow rates of the constituents in the feeding gas. In doing so, the flow rates of CO2 was varied from 15–50 ml·min−1 while N2 served as the balance to keep the total flow rate at 120 ml·min−1. The actual flow rates of CO2, CH4 and N2 used for this study are listed in Table II. While changing the partial pressure of oxygen in the feed gas can impact on the resultant CO2 flux as was previously demonstrated [30], the variation of CH4 concentrations would not affect the partial pressure of oxygen in the feed gas as both CH4 and N2 are considered inert. The long-term stability of MOCC in a simulated natural gas containing 15% CO2 was also evaluated at 650°C. The microstructure of the membrane after the long-term operation was further examined by scanning electron microscope (SEM) to understand the root cause of the degradation.

Results and Discussion

The effect of temperature.— The Arrhenius plot of CO2 flux density, JCO2, measured with a simulated natural gas containing 15% CO2, as the feeding gas is shown in Fig. 2. As expected, JCO2 increases with temperature, indicating that the permeation of CO2 is a thermally activated process. The slope of the straight-line (ln (JCO2) vs 1000/T) yields an activation energy of $E_a = 48.86 \text{ kJ mol}^{-1}$. This value is lower than that of SDC,32 a rate-limiting phase previously identified for the CO2 transport in MOCC.30 One possible reason for the lowered $E_a$ is the electronic conduction induced by the reduction of Ce4+ at low partial pressure of oxygen (P02) exposed to the membrane. Overall, at 700°C, JCO2 reaches 0.11 ml·min−1·cm−2, a moderately high flux-density for the membrane thickness and operating temperature tested.

![Image](https://example.com/figure1.png)

Figure 1. Schematic illustration of working principle of MOCC membranes for CO2/CH4 separation.

![Image](https://example.com/figure2.png)

Figure 2. Arrhenius plots of CO2 flux density in a simulated natural gas containing 15% CO2.

![Image](https://example.com/figure3.png)

Figure 3. CO2 flux density as function of logarithm of CO2 partial pressure across the membrane.

Table II. Mass flow rates (mL·min−1) of CO2, CH4 and N2 used to make different CO2 concentrations of the feeding gas.

<table>
<thead>
<tr>
<th>Gas</th>
<th>Gas1</th>
<th>Gas2</th>
<th>Gas3</th>
<th>Gas4</th>
<th>Gas5</th>
<th>Gas6</th>
<th>Gas7</th>
<th>Gas8</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>CH4</td>
<td>85</td>
<td>80</td>
<td>75</td>
<td>70</td>
<td>65</td>
<td>60</td>
<td>55</td>
<td>50</td>
</tr>
<tr>
<td>N2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
the feeding side and \( P_{CO_2} \) is the lower CO\(_2\) partial pressure at the sweeping side; \( L \) is the thickness of the membrane; \( F \), \( R \) and \( T \) have their usual meanings.

From the slope \( \sigma_{\sigma_2} \) is estimated to be 41.5 S/m according to 
\[
- \frac{\varepsilon}{RT} \left( 1 - \psi \right) \left( \sigma_{\sigma_2} \right) \text{ with } \varepsilon \approx \psi \approx 0.4, \tau \approx 11, \quad L = 0.00118 \text{ m}, \\
R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1} \quad \text{and } F = 96485 \text{ C mol}^{-1};
\]
this value is much greater than \( \sigma_{\sigma_2} \) (923 K) = 3.1 S m\(^{-1}\) reported for air.\(^{34,35}\) The higher \( \sigma_{\sigma_2} \) may be attributed to the presence of electron conduction in SDC.

The highest CO\(_2\) flux reached 0.13 ml min\(^{-1}\) cm\(^{-2}\) at 650°C and \( P_{CO_2} \) = 0.375 atm. It is worth mentioning that \( J_{CO_2} \) shown in Fig. 3 is higher than in Fig. 2, e.g., 0.11 ml min\(^{-1}\) cm\(^{-2}\) at 650°C in Fig. 3 vs 0.11 ml min\(^{-1}\) cm\(^{-2}\) at 700°C in Fig. 2. We attribute it to the performance improving “break-in” behavior occurring during the flux-temperature measurement period that produced Fig. 2. The following long-term stability study further supports this assertion by showing an early-stage performance improvement “break-in” behavior.

The performance of MOCC is also compared in Table III with other types of membranes. Note that the flux-density obtained in this study has to be converted to permeance with the consideration of membrane thickness and pressure differential in order to compare with other membranes on the same basis. The selectivity of CO\(_2/\text{CH}_4\) was determined from the concentration of N\(_2\) in the sweeping gas leaked through the membrane. Within the N\(_2\) concentration (<0.03%) detected in the sweeping helium, the selectivity of CO\(_2\) is calculated to be >100. Evidently, the electrochemical MOCC membrane is advantageous over other size-exclusion membranes in permeance and selectivity, and is virtually unlimited by the “Robeson Upper Bound”.\(^{27,28}\)

**Long-term flux stability.—** The long-term stability of the membrane with a simulated natural gas containing 15% CO\(_2\) at 650°C.

![Figure 4. CO\(_2\) flux stability measured with a simulated natural gas containing 15% CO\(_2\) at 650°C.](image)

Overall, the degradation rate is relatively small; the flux density remains >0.12 ml min\(^{-1}\) cm\(^{-2}\) even after 100 hours. Our most recent study has shown that the loss of carbonate can be mitigated by modifying the surface of oxide matrix with Al\(_2\)O\(_3\) as the latter has a full wettability with molten carbonates and thus increases membrane’s ability to immobilize molten carbonates inside the porous ceramic skeleton.\(^{31,36}\)

The microstructures of the membrane at various locations before and after the long-term test are shown in Fig. 5. In particular, the
surface and sub-surface regions of the sweeping-gas side located at the bottom of the cell, Fig. 5b and 5d, are heavily covered by carbonate, implying a downward movement of carbonate during the test. The surface and sub-surface regions of the feeding-gas side located at the top of the cell are shown in Fig. 5c and 5f with porosity and partially filled carbonate, respectively, indirectly supporting the downward movement of carbonate. What is a surprise is the large amount of partially filled carbonate, respectively, indirectly supporting the downward movement of carbonate during operation. In future research, we will further investigate as a “sandwich-like” structure seems to suggest that carbonate at the bottom of the cell, Fig. 5b and 5d, are heavily covered by carbonate, implying a downward movement of carbonate during the test. The surface and sub-surface regions of the feeding-gas side located at the top of the cell, Fig. 5c and 5f with porosity and partially filled carbonate, respectively, indirectly supporting the downward movement of carbonate. What is a surprise is the large amount of partially filled carbonate, respectively, indirectly supporting the downward movement of carbonate during operation. In future research, we will further investigate as a “sandwich-like” structure seems to suggest that carbonate at the bottom of the cell, Fig. 5b and 5d, are heavily covered by carbonate, implying a downward movement of carbonate during the test.

Conclusions

The electrochemical SDC-carbonate MOCC membrane has been successfully demonstrated for CO2 separation from a simulated natural gas containing 12.5 to 37.5% CO2 with high flux density and selectivity. The CO2 flux density increases with temperature and CO2 concentration in the feeding gas. The maximum flux density of CO2 reaches 0.133 ml·cm−2·min−1 at 650 °C and CO2 concentration of 37.5%. Furthermore, the flux remains > 0.12 ml·cm−2·min−1 during a 100-h stability test at the same temperature. The gradual loss of carbonate during the operation is thought to be the reason for the initial increase and later decrease in flux density.

Acknowledgment

Financial supports from NSF (CBET-1340269, CBET-1401280), U. S. Army Research Office (W911NF-10-R-006 and W911NF-13-1-0158) are greatly appreciated. JT and MH specially thank for support from China Scholarship Council (CSC).

References