2-2010

Excavation of the Lawton Site Palisade

Keith Stephenson
University of South Carolina - Columbia, dkstephe@mailbox.sc.edu

Adam King
University of South Carolina - Columbia, aking000@mailbox.sc.edu

Christopher Thornock
University of South Carolina - Columbia, cthornock@srarp.org

Follow this and additional works at: https://scholarcommons.sc.edu/sciaa_staffpub

Part of the [Anthropology Commons](https://scholarcommons.sc.edu/sciaa_staffpub)

Publication Info
Published in *Legacy, Volume 14, Issue 1, 2010, pages 10-12.*
http://www.cas.sc.edu/sciaa/
© 2010 by The South Carolina Institute of Archaeology and Anthropology

This Article is brought to you by the Archaeology and Anthropology, South Carolina Institute of at Scholar Commons. It has been accepted for inclusion in Faculty & Staff Publications by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.
Excavation of the Lawton Site Palisade
By Keith Stephenson, Adam King, and Christopher Thornock

In an effort to place Mississippian period (AD 900 to 1600) sites on the Department of Energy’s Savannah River Site (SRS) in a broader and more meaningful context, staff of the Savannah River Archaeological Research Program (SRARP) initiated a long-term research project at the Lawton site (38AL11) in 1999. Lawton is a small Mississippian mound center in Allendale County, South Carolina. The site is approximately three acres in extent and is situated in the floodplain along the bank of a backwater slough approximately 250 meters east of the Savannah River. The most prominent cultural features at Lawton include two platform mounds that are each about three meters in height and referred to as the North and South mounds (Fig. 1). Preserved on the site’s northeastern edge is the borrow pit for mound fill. An intact fortification ditch five meters wide and one meter deep encircles the site. An earthen embankment is present along the outer perimeter of the ditch.

In 2008, staff from the SRARP conducted fieldwork at Lawton and focused on a portion of the remains of a burned and collapsed palisade that once surrounded the site. We initially suspected the presence of a burned enclosure in 1999 when concentrations of fired daub were detected through systematic shovel testing along the interior edge of the fortification ditch, as well as the terrace edge (Fig. 2). In 2007, with funding from the South Carolina Institute of Archaeology and Anthropology’s Archaeological Research Trust Fund, Chet Walker of Archaeo-Geophysical Associates, LLC, conducted limited magnetometer surveys at both Lawton (38AL11) and a second mound site nearby, the Red Lake site (9SN4). Magnetometers detect local variations in magnetism that can be caused by soil changes, disturbances, and burning. The goal of the surveys was to determine whether remote sensing techniques could provide information on the structure of Middle Savannah River mound centers. At Lawton, the magnetometer survey revealed clear anomaly patterns on the southern, eastern, and northern interior margins of the fortification ditch. These highly magnetic burned daub concentrations confirmed the presence of what we had interpreted as a palisade wall collapse (Fig. 3).

To investigate the nature of the palisade feature, we excavated a 2 X 4-meter block adjacent to the bluff edge where a high density of burned daub had been identified during systematic shovel testing. Our objective was to verify the presence of a palisade line underlying the daub feature by confirming the presence of patterned postmolds as has been noted at numerous other Mississippian period sites contemporary with Lawton (ca. A.D. 1250 to 1350).

In general, the soil profile at Lawton consists of clay alluvium, a result of overbank flooding, which directly
overlies midden deposits. Excavation data show little evidence of damage to the Mississippian component at Lawton due to fluvial processes. Characterized stratigraphically, the uppermost soil stratum is represented by a 20-centimeter thick layer of alluvial clay resulting from historic period agricultural practices and subsequent erosion in the Piedmont. Substantial concentrations of burned daub were present in the lower zone of this alluvial deposit. The underlying midden consists of two strata: a 10-centimeter layer of lighter colored mottled sandy-silt overlying a homogenous darker colored layer of sandy-silt extending into the base of the block excavation at 40 centimeters below datum.

The block excavation consisted of eight 1 X 1-meter units (Proveniences 132, 133, 188, 205, 206, 207, 208, and 209) excavated in five arbitrarily defined levels, with Levels A – C dug in 10-centimeter levels and D and E dug in five-centimeter levels. All soil was screened through ¼-in. mesh, except for the upper portions of the alluvial layer due to its redeposition from an upstream source. The excavation of Level A proceeded with the removal of the upper 10 centimeters of clay alluvium. The lower 10 centimeters of clay alluvium (Level B) contained burned daub concentrations, which were exposed and recorded with scaled drawings. Midden deposits lay directly below the daub concentration. As noted, the midden was a 20-centimeter thick layer (Levels C, D, and E). Removal of this layer revealed a wall trench feature 30-40 centimeters in width running the length of the block excavation (Figs. 4 and 5). The wall trench was evident as a tan-colored soil feature in a surrounding light brown submidden matrix. Post molds were difficult to discern in the wall trench, but were perceptible as amorphous light brown stains. The absence of charcoal in the post molds indicates that the wall posts did not burn completely to the ground surface.

To better understand the nature of the wall trench construction, a 70 centimeter-wide slot-trench was excavated along the south block profile. Eventually, we extended this slot trench 1.5 meters northward across the block unit in an attempt to more fully expose the postmolds in plan. In profile (Fig. 6), the wall trench extended approximately 80 centimeters into the subsoil from the base of the alluvial layer. At this depth, the wall trench narrowed from a width of 40 centimeters to about 20 centimeters, where it continued into the base of the slot-trench.

At the base of the slot-trench (110 centimeters below surface), five post molds were exposed in plan, and they were identifiable only as splotchy white-colored soil stains devoid of organics in a tan soil matrix (Fig. 7). The postmolds were 20-30 centimeters in diameter, and they in actuality may be postholes rather than molds with their organic signature having leached through the sandy substrate. These postmolds (or holes) were spaced 15-25 centimeters apart and extended to a depth of 20 centimeters from the base of the wall trench. It is noteworthy that the wall trench cuts through the midden,
rather than the midden having formed after the palisade was erected. Evidence for this inference lies in the fact that the midden on the interior side of the palisade had two layers, one consisting of mottled soil with artifacts overlying a more homogenous dark brown midden. The upper layer appears to be midden and subsoil excavated from the wall trench at the time of its construction. If the palisade had been planned and built at the time Lawton was first occupied, then the substrate backfill of the wall trench should be found below a homogenous artifact laden and organic rich midden.

In sum, daub concentrations that encircled the Lawton mound site on the interior edge of the fortification ditch were detected through systematic shovel testing and magnetometer survey. The dense concentrations of daub were indicative of a constructed log palisade plastered with clay, which eventually burned. Our recent excavations confirmed the presence of a palisade evidenced by postmolds or postholes set within a wall trench. Most important is the fact that the wall trench appears to have been built after the site had been occupied for some time. By extension, the fortification ditch may also have been constructed after initial occupation of the site.

It is generally assumed that palisade walls were constructed as fortifications designed to protect the occupants of Mississippian communities. Here at Lawton, it remains possible that both the palisade wall and associated ditch were built for just that purpose. By Mississippian mound town standards, Lawton is small. In excavations conducted there to date, we have found dense middens but little substantial architecture. Given this, there may not have been a significant, permanent population residing at Lawton to protect. It is possible that palisade walls and ditches like the ones at Lawton were built not so much to protect people within them as to define different categories of space. At Mississippian sites ranging from the great Cahokia site near St. Louis to the Irene site at the mouth of the Savannah River, palisade walls were used to enclose mounds and open spaces and segregate them from the rest of the site. Perhaps the palisade wall and ditch at Lawton were created, at least in part, to define the mounded precinct as a distinct and important category of space to be kept separate from residential areas.

As yet, we do not understand the distribution of settlements associated with the Lawton site. It is clearly a small place that housed at best a small resident population. We expect that the rest of the people who viewed Lawton as a sacred and political center lived scattered across the uplands and floodplains around the site. In order to begin to understand the functions of Lawton’s palisade and ditch, we need to understand more clearly how the site was used and how the people who used it distributed themselves on the landscape.