5-24-2004

Growth and Transport Properties of Complementary Germanium Nanowire Field Effect Transistors

Andrew B. Greytak
University of South Carolina - Columbia, greytak@chem.sc.edu

Lincoln J. Lauhon

Mark S. Gudiksen

Charles M. Lieber

Follow this and additional works at: https://scholarcommons.sc.edu/chem_facpub

Part of the Biochemical and Biomolecular Engineering Commons, Biological and Chemical Physics Commons, and the Other Biochemistry, Biophysics, and Structural Biology Commons

Publication Info
Copyright 2004 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
http://dx.doi.org/10.1063/1.1755846

This Article is brought to you by the Chemistry and Biochemistry, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.
Growth and transport properties of complementary germanium nanowire field-effect transistors

Andrew B. Greytak, Lincoln J. Lauhon, Mark S. Gudiksen, and Charles M. Lieber

Citation: Applied Physics Letters 84, 4176 (2004); doi: 10.1063/1.1755846

View online: http://dx.doi.org/10.1063/1.1755846

View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/84/21?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Electrical characteristics of asymmetrical silicon nanowire field-effect transistors

Electronic transport characteristics of electrolyte-gated conducting polyaniline nanowire field-effect transistors

Appl. Phys. Lett. 95, 013113 (2009); 10.1063/1.3176444

β - Ga 2 O 3 nanowires: Synthesis, characterization, and p -channel field-effect transistor

Appl. Phys. Lett. 87, 222102 (2005); 10.1063/1.2135867

Optical and electrical transport properties in silicon carbide nanowires

Germanium nanowire field-effect transistors with SiO 2 and high-κ HfO 2 gate dielectrics

One-dimensional nanostructures, such as semiconductor nanowires and single-walled carbon nanotubes are promising building blocks for nanoscale device applications ranging from biological sensors to nanoelectronics.1–5 The ability to control rationally and predictably the properties of these building blocks will be essential for improving the properties of individual devices and moving toward integrated nanosystems. In particular, the availability of both n- and p-type semiconductor components would enable the assembly of complementary logic devices, which can exhibit faster transistor switching speeds and lower power consumption than unipolar devices. Complementary devices based on carbon nanotubes have been demonstrated by several groups4,5 although the simultaneous production of metallic and semiconducting nanotubes during growth,5 as well as the fact that n-type doping is typically accomplished following device assembly and is not always permanent,5 could limit applications.

Semiconductor nanowires offer the ability to control composition and doping at the time of synthesis by applying the knowledge gained from research on planar semiconductor systems.1 Complementary doping has been accomplished in several nanowire materials such as silicon (Si) and gallium nitride (GaN),1,2,6 and has been used to assemble inverters, bipolar transistors, and light-emitting diodes.2,6 However, achieving good electronic properties for both p- and n-channel field-effect transistors (FETs) (p-FETs and n-FETs) in the same material has proved challenging. As transistor switching speeds and on currents are ultimately limited by carrier mobilities, it is desirable to fabricate complementary nanowire devices using semiconductors with high carrier mobilities. Germanium has higher electron and hole mobilities than Si7 and, therefore, offers potential performance gains compared to Si-based planar and nanowire devices.

Here, we describe the synthesis of p- and n-type Ge nanowires and the fabrication of Ge nanowire p- and n-FETs. Previously, Ge nanowires have been synthesized by the vapor–liquid–solid (VLS) approach in which vapor phase Ge is provided by laser ablation,8 physical vapor transport,9,10 or by a molecular precursor in a chemical vapor deposition (CVD) process.11,12 The CVD approach coupled with VLS is especially attractive since it enables the precise control of reactants and dopants needed to achieve high-quality electronic materials and, furthermore, can be extended to produce more complex nanowires, such as core-shell structures via homogenous radial growth.11

Our overall approach to the controlled growth and doping of complementary Ge nanowires is outlined in Fig. 1. Intrinsic nanowire growth from 10 nm Au nanoclusters11,13 was initiated at 320 °C and 500 Torr using 1.5% germane (GeH₄) in an atmosphere of hydrogen (H₂). After this nucleation step, elongation of the single-crystal nanowire structure was carried out at a reduced temperature of 285 °C to minimize nonspecific decomposition of germane on the nanowire surface.14 The nanowire surfaces were then doped at 380 °C with either phosphine (PH₃) or diborane (B₂H₆) (both 100 ppm in H₂) at 5 Torr in the absence of germane. The doping conditions were chosen to produce a self-limited layer of activated dopant atoms15 as estimated from atomic-layer-doping studies on planar SiGe.16–18 The 10 nm δ-doped cores were then coated with a ~5 nm thick i-Ge shell.11 Transmission electron microscopy (TEM) was used to characterize the core diameter, shell thickness, and crystallinity of Ge nanowires grown by our core-shell method.19

![FIG. 1. Schematic illustrating the approach used to synthesize n- and p-type Ge nanowires.](image-url)
The diameter was 20±4 nm, confirming that a shell of thickness ～5 nm was grown. The TEM data also demonstrate that the diameter is uniform along the length of the wire [Figs. 2(b) and 2(c)], and thus that radial shell growth occurred after, but not during, axial core growth, as concomitant axial and radial growth lead to tapering. High-resolution TEM images shown in Figs. 2(b) and 2(c) further show that the capping shell is epitaxial along the entire length of the nanowire.

Systematic electrical transport measurements were carried out to evaluate the performance of FETs fabricated from our doped Ge nanowires. The FETs consisted of individual Ge nanowires with Ti source and drain contacts (typical separation 1.5 μm), and were gated via the degenerately doped Si substrate through a 60 nm thick zirconium oxide (ZrO2) dielectric layer. Figure 3(a) shows the current (ID) versus drain–source bias voltage (VD) (output characteristics) for a boron-doped Ge nanowire at different values of the gate voltage (VG). The curves are characteristic of a p-channel metal–oxide–semiconductor (MOS) FET. The linear relationship of ID and VD at low bias indicates good ohmic contact to the nanowire with a contact resistance of <200 kΩ, which was typical for the devices studied. Only slight curvature corresponding to saturation effects is observed for |VD|<2 V. A plot of ID versus VG (transfer characteristic) with VD fixed at 1 V shows the on/off ratio of 105 and subthreshold slope of 240 mV/dec [Fig. 3(b)]. The transconductance at VD=1 V was 3.3 μA/V, corresponding to an estimated field-effect mobility of ~115 cm2/V s. The on current at 1 V drain and −2 V gate overdrive was 4.8 μA. For comparison with planar devices, this is equivalent to an

Figure 2 shows a representative Ge nanowire with a diameter of 22 nm. In agreement with previous studies of VLS-grown nanowires,13 the diameter of Ge nanowires grown without shells correlated well with the diameter of the Au nanoclusters: Among 50 wires grown from 10 nm nanoclusters, the diameter was 10±3 nm. The same nanocluster size, nucleation step, and axial growth step, followed by the doping and shell growth steps described above, were used to produce the nanowire shown in Fig. 2. Among 50 wires in this sample, the diameter was 20±4 nm, confirming that a shell of thickness ～5 nm was grown. The TEM data also demonstrate that the diameter is uniform along the length of the wire [Figs. 2(b) and 2(c)], and thus that radial shell growth occurred after, but not during, axial core growth, as concomitant axial and radial growth lead to tapering. High-resolution TEM images shown in Figs. 2(b) and 2(c) further show that the capping shell is epitaxial along the entire length of the nanowire.

Systematic electrical transport measurements were carried out to evaluate the performance of FETs fabricated from our doped Ge nanowires. The FETs consisted of individual Ge nanowires with Ti source and drain contacts (typical separation 1.5 μm), and were gated via the degenerately doped Si substrate through a 60 nm thick zirconium oxide (ZrO2) dielectric layer. Figure 3(a) shows the current (ID) versus drain–source bias voltage (VD) (output characteristics) for a boron-doped Ge nanowire at different values of the gate voltage (VG). The curves are characteristic of a p-channel metal–oxide–semiconductor (MOS) FET. The linear relationship of ID and VD at low bias indicates good ohmic contact to the nanowire with a contact resistance of <200 kΩ, which was typical for the devices studied. Only slight curvature corresponding to saturation effects is observed for |VD|<2 V. A plot of ID versus VG (transfer characteristic) with VD fixed at 1 V shows the on/off ratio of 10^5 and subthreshold slope of 240 mV/dec [Fig. 3(b)]. The transconductance at VD=1 V was 3.3 μA/V, corresponding to an estimated field-effect mobility of ~115 cm^2/V s. The on current at 1 V drain and −2 V gate overdrive was 4.8 μA. For comparison with planar devices, this is equivalent to an

![Figure 2](image-url)

FIG. 2. TEM characterization of a Ge nanowire prepared using the approach outlined in Fig. 1. (a) Ge nanowire on lacy carbon support film. Scale bar is 0.5 μm. (b) and (c) High-resolution TEM images recorded from the two indicated regions of the nanowire in (a); the images are separated by 3 μm. Scale bars are 5 nm. [Inset of (c)] Two-dimensional Fourier transform of the data in (c) showing the [111] zone axis and a [110] growth direction. The six inner peaks are forbidden 1/3 (422) reflections that arise due to the finite thickness of the nanowire (see Ref. 24).

![Figure 3](image-url)

FIG. 3. Germanium nanowire p- and n-FETs. (a) Output characteristics of p-FET. The gate voltage VG was stepped in 0.5 V increments from −5 to −2.5 V. Inset: Scanning electron microscopy image of a typical device. Scale bar is 1 μm. (b) Transfer characteristic of p-FET at 1 V drain. (c) Output characteristics of n-FET. The gate voltages VG were, starting from the top, +5 V, +2.5 V, 0 V, −0.5 V, −1.5 V, and −5 V. (d) Transfer characteristic of n-FET at 1 V drain.
on current of 360 μA/μm for a 1 μm gate length. Among 30 p-FETs measured on two separately fabricated samples, the total yield was 86%. The average (maximum) on current was 250 μA/μm (850 μA/μm), and the average (maximum) transconductance was 2.8 μA/V (4.9 μA/V) corresponding to a field-effect mobility of ~100 cm²/V·s (170 cm²/V·s).

Output and transfer characteristics for a phosphorus-doped Ge nanowire FET are shown in Figs. 3(c) and 3(d). The Ti contacts are ohmic with low contact resistance, as in the case of the p-FET. The gate response is characteristic of an n-channel MOSFET. The on current for the n-FET was 200 μA/μm at 1 V drain and 4 V gate overdrive, the sub-threshold slope was 675 mV/dec, and the on/off ratio was 10⁷. The relatively higher off current observed in the n-FETs versus the p-FETs could be caused by acceptor impurities in the intrinsic Ge core or by acceptors at the (unpassivated) nanowire surface. The transconductance of 0.6 μA/V at 1 V drain corresponds to a field-effect mobility of ~20 cm²/V·s. Forty-five n-FETs on three separately fabricated samples had a yield of 88%. The average (maximum) on current was 125 μA/μm (200 μA/μm), and the average (maximum) transconductance was 0.6 μA/V (1.0 μA/V) corresponding to a field-effect mobility of ~20 cm²/V·s (35 cm²/V·s).

The on currents and transconductances of our complementary Ge nanowire FETs exceed those of previously reported Si (Ref. 20) and GaN (Refs. 6 and 21) nanowire transistors, and are similar to those recently published for p-type Ge nanowire FETs by Wang et al. The on currents also compare favorably to that of a recently reported planar Ge p-MOSFET which had an on current of 100 μA/μm at 2 V drain and ~1 V gate overdrive for a 2 μm gate length. The calculated mobility of the planar FET, 313 cm²/V·s, was larger than we found for our system, although this is not surprising given that the surfaces of the Ge nanowire FETs were unpassivated. Higher mobilities and smaller subthreshold slopes should be obtainable for future Ge nanowire FETs by deposition of a Ge oxynitride or SiGe capping layer that could limit charge traps at the nanowire surface. Our bottom-up approach to device fabrication will allow such passivation to be carried out in situ following Ge nanowire synthesis, and this should lead to improved characteristics for both n- and p-type Ge nanowire FETs.

In conclusion, our multistep low-temperature nanocluster-mediated VLS nanowire growth and doping method represents a straightforward and flexible way to produce n- and p-Ge nanowires for nanoscale device applications. Complementary FETs made from these nanowires show high transconductances and excellent ohmic contacts. Further improvements in Ge nanowire FET performance are expected from optimization of the doping procedure and attention to surface passivation. Self-limiting surface doping of nanowires also offers the potential advantage of controlling dopant fluctuations that become critical at the nanoscale. The efficacy of this method in Ge suggests that it should be considered as a general and rational approach to the controlled doping of other nanowire materials in the future.

14 In agreement with D. Wang, Q. Wang, A. Javey, R. Tu, H. J. Dai, H. Kim, P. McIntyre, T. Krishnamohan, and K. C. Saraswat, Appl. Phys. Lett. 83, 2432 (2003), we found the VLS growth mechanism to be active at 285 °C despite the fact that the bulk Ge–Au eutectic temperature is 361 °C. We additionally found, however, that the initial nucleation step at 320 °C greatly improved the nanowire yield compared to isothermal growth at 285 °C.
15 Under our conditions, P deposition is expected to saturate at 0.1–0.4 monolayers (MLs). Deposition of B is not self-limiting, but only the first ML is electrically active. We estimate ~1 ML of B deposition under our conditions.
19 Nanowires suspended in ethanol were dispersed onto a Cu grid with a lacey carbon support film, and imaged with a JEOL 2001F TEM at an accelerating voltage of 200 kV.