
B. L. Yu
F. Zeng
V. Kartazayev
R. R. Alfano
K. C. Mandal

University of South Carolina - Columbia, mandalk@engr.sc.edu

Follow this and additional works at: https://scholarcommons.sc.edu/elct_facpub

Part of the Electrical and Electronics Commons, and the Engineering Physics Commons

Publication Info
http://dx.doi.org/10.1063/1.2194647
http://scitation.aip.org/content/aip/journal/apl/88/15/10.1063/1.2194647

This Article is brought to you by the Electrical Engineering, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact digres@mailbox.sc.edu.
B. L. Yu, F. Zeng, V. Kartazayev, R. R. Alfano, and Krishna C. Mandal

Citation: Applied Physics Letters 88, 159902 (2006); doi: 10.1063/1.2194647
View online: http://dx.doi.org/10.1063/1.2194647
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/88/15?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Response to “Comment on ‘GaSe1–xSx and GaSe1–xTe x thick crystals for broadband terahertz pulses generation’” [Appl. Phys. Lett. 100, 136103 (2012)]

Comment on “GaSe1–x S x and GaSe1–x Te x thick crystals for broadband terahertz pulses generation” [Appl. Phys. Lett. 99, 081105 (2011)]

Terahertz studies of the dielectric response and second-order phonons in a GaSe crystal
Appl. Phys. Lett. 87, 182104 (2005); 10.1063/1.2093944

Tunable terahertz-frequency resonances and negative dynamic conductivity of two-dimensional electrons in group-III nitrides
J. Appl. Phys. 96, 6488 (2004); 10.1063/1.1811388

A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540 μm for variety of potential applications
Appl. Phys. Lett. 84, 1635 (2004); 10.1063/1.1649802

B. L. Yu, F. Zeng, V. Kartazayev, and R. R. Alfano

Institute for Ultrafast Spectroscopy and Lasers and New York State Center for Advanced Technology for Ultrafast Photonics Materials and Applications, Physics Department, The City College of the City University of New York, New York, New York 10031

Krishna C. Mandal

EIC Laboratories, Inc., 111 Downey Street, Norwood, Massachusetts 02062

(Received 21 February 2006; accepted 20 March 2006; published online 11 April 2006)

[DOI: 10.1063/1.2194647]

The real and imaginary conductivities were plotted in \(\Omega^{-1}\) m\(^{-1}\) while they should have been \(\Omega^{-1}\) cm\(^{-1}\). The Drude fit from which we extracted the plasma frequency and momentum relaxation rate was incorrectly modeled after the real conductivity which, as we discovered, can be flawed due to irregularities in the phase of the THz transient. We corrected this by modeling the imaginary part of the conductivity [Fig. 1] which has little dependence on the real index of refraction. The key parameters determined from the THz data using the Drude model are not significantly different from those previously reported: the plasma frequency \(\omega_p=6.1\pm0.5\) THz, the average momentum relaxation time \(\langle\tau\rangle=51\pm6\) fs, and the mobility \(\mu=89.7\) cm\(^2\)/Vs for electrons. No other conclusions of the paper are affected.

The authors would like to thank David Cooke and Dr. Hakan Altan for their input.

\(^{a}\)Electronic mail: alfano@sci.ccny.cuny.edu

FIG. 1. Complex conductivity for the real part \(\sigma_r(\nu)\) and the imaginary part \(\sigma_i(\nu)\) in the THz region. The dashed line is fitted by the equation \(\sigma_i=\sigma_0\omega_0^2/\omega^2+\langle\tau\rangle^{-2}\) using the parameters \(\langle\tau\rangle=51\pm6\) fs and \(\omega_p=6.1\pm0.5\) THz.