1-1-2003

A Novel Electrodeposition Process for Plating Zn-Ni-Cd Alloys

Hansung Kim
University of South Carolina - Columbia

Branko N. Popov
University of South Carolina - Columbia, popov@engr.sc.edu

Ken S. Chen

Follow this and additional works at: http://scholarcommons.sc.edu/eche_facpub

Part of the Chemical Engineering Commons

Publication Info

© The Electrochemical Society, Inc. 2003. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in the Journal of the Electrochemical Society.

http://www.electrochem.org/

Publisher's link: http://dx.doi.org/10.1149/1.1534599

DOI: 10.1149/1.1534599
A Novel Electrodeposition Process for Plating Zn-Ni-Cd Alloys

Hansung Kim, Branko N. Popov, and Ken S. Chen

*Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
Sandia National Laboratories, Engineering Sciences Center, Albuquerque, New Mexico 87185-0834, USA

Zn-Ni-Cd alloy was electrodeposited from an alkaline electrolytic bath under potentiostatic conditions. Bath analyses using a pH concentration diagram reveal that addition of a complexing agent is essential to maintain the bath stability. Introduction of a low concentration of CdSO₄ reduces the anomalous nature of the Zn-Ni deposit. Deposits obtained from the electrolytic bath which contains 60 g/L of ZnSO₄·7H₂O, 40 g/L of NiSO₄·6H₂O, 1 g/L of CdSO₄, and 80 g/L of (NH₄)₂SO₄ in the presence of additives and ammonium hydroxide at pH 9.3 has a composition of 50 wt % of Zn, 28 wt % of Ni, and 22 wt % of Cd. By optimizing the Cd concentration in the bath, it is possible to control the amount of Ni in the deposit. At large overpotentials, the surface of the electrode is covered with hydrogen which lowers the deposition current density. Rotating disk electrode studies indicated that the deposition of Cd is under mass control, while Ni deposition is under kinetic control.

© 2003 The Electrochemical Society. [DOI: 10.1149/1.1534599] All rights reserved.

Results and Discussion

Striping cyclic voltammogram (SCV).—SCV was used to obtain preliminary information about the Zn-Ni-Cd deposition process. Electrodeposition of Zn-Ni-Cd was carried out on a platinum rotating disk electrode from a solution containing 1 g/L of CdSO₄, 20 g/L of NiSO₄·6H₂O, 40 g/L of ZnSO₄·7H₂O, and 0.5 M Na₂SO₄. Figure 1 shows the SCV analysis of Zn-Ni-Cd deposits obtained at different rotation speeds. The potential scan of the SCV began at 0 V vs. SCE in the cathodic direction until −1.5 V vs. SCE after which the scan was reversed to come back to the starting point. During the cathodic scan, the deposition of Zn, Ni, and Cd proceeds along with the hydrogen evolution reaction. The deposition currents begin to increase after about −0.9 V and rises indefinitely due to accompanying hydrogen evolution reaction. During the anodic scan distinct peaks were observed which could be attributed to the dissolution of alloy components. Based on the potentials at which these peaks occur, one can make a qualitative estimate of the alloy composition. The first peak that is seen at around −0.8 V vs. SCE is assigned to the deposition of Ni.
corresponds to the Zn dissolution. Based on the potential at which the peak occurs (~0.6 V vs. SCE), the second anodic dissolution peak can be thought to be due to the dissolution of Cd-rich phase. The third dissolution peak that is seen in the anodic scan of the SCV is attributed to the dissolution of Ni-rich phase. When the rotation speed is increased, the Cd and Zn dissolution peaks increase indicating the mass-transfer controlled nature of the deposition processes, which are in agreement with previous studies. The Ni-dissolution peak, on the contrary, decreases with increasing the rotation speed. Nickel deposition is kinetic controlled, and the observed decrease in nickel content in the codeposit is merely due to the effect of accompanying side reactions that are under mass-transfer control. With this knowledge about the deposition process, we next proceed to study the effect of bath composition on the deposit composition.

Effect of Cd concentration.—Figure 2 shows the effect of CdSO₄ concentration and deposition potential on the composition of Zn-Ni-Cd ternary alloy. The concentration of CdSO₄ was varied from 0.5 to 3 g/L while the concentration of ZnSO₄·7H₂O and NiSO₄·6H₂O were fixed as 10 and 40 g/L, respectively. The bath pH was maintained at 9.3, and the depositions were done without any stirring of solution.

As was shown in the stripping cyclic voltammetry studies, cadmium and zinc depositions are mass-transfer controlled while nickel deposition is kinetically controlled. For this reason, the applied potential of electrodeposition and concentrations of the electroactive species largely affect the deposit composition and thereby the properties. When electrodeposition is carried out at potentials of ~1.0 V vs. SCE, the concentration of Cd dominates in the deposit because of its low reduction potential when compared to that of Zn. Ni also has a low equilibrium potential, but it has a high activation overpotential for the deposition to occur at room temperature. In the case of acid sulfate bath at pH 2.5, Ni deposition occurs at ~0.9 V vs. SCE, which is a much more cathodic potential than its standard potential. Further increase in the deposition potential results in an increase in the concentrations of Zn and Ni in the deposit. When
CdSO₄ concentration in the bath is increased beyond 2 g/L, deposition of Zn is completely suppressed, and there is a complete domination of Cd in the deposit. For a better understanding of the deposition process, the partial current densities of each component were calculated using Faraday's law. Figure 3 shows a plot of the partial current densities of Zn, Cd, and Ni as a function of electrodeposition potential. When the concentration CdSO₄ in the bath is <1 g/L, increasing the applied potential has an effect on the composition of the deposits because the limiting current of Cd is lower than the partial current density of Ni. Since Cd deposition is mass-transfer controlled, the concentration of Cd in the deposit does not increase once the limiting current density for deposition is reached. However, a further increase in the concentration of CdSO₄ leads to an increase in the limiting current density thereby resulting in a complete domination of Cd deposition. The deposits contain about 80 wt % of Cd under these conditions, and increasing the applied potential results in little change to the deposit composition. This study indicates that the concentration of CdSO₄ is critical to maintain a proper composition of the deposit.

Effect of pH.—pH of the electrolyte determines the concentration of the electroactive species present at the interface and thereby controls the deposition potential. Figure 4 shows the effect of pH on the deposition of Zn-Ni-Cd ternary alloy as a function of deposition potential. When the pH of the electrolytic bath is increased, the Zn and Ni deposition potentials, in particular, appear to shift to more negative values. The nickel composition in the codeposit decreases and the cadmium composition increases with increasing pH. The composition values given in Fig. 4 have been normalized based on Zn, Ni, and Cd composition values, and the real changes in the compositions of nickel and cadmium are not clearly seen. Figure 5 shows the partial current density of Ni and Cd deposited at different pH conditions. It is seen that increasing the pH has more influence on the Ni content compared to the other elements. The Ni partial current density measured at -1.4 V vs. SCE decreases to 66.5% with increasing the pH of the electrolyte. Cadmium partial current reaches a limiting current density at around -1.2 V vs. SCE, and its value decreases by 6.7% with increasing the pH from 9.3 to 11.3.

Figure 6 shows the calculated equilibrium concentrations of the electroactive species in the Zn-Ni-Cd plating bath as a function of pH. The concentrations of all electroactive species in the bath were determined by using various element balances, equilibrium conditions, and the electroneutrality conditions at a specified pH. The governing equations and the computational details are summarized and shown in the Appendix. As the pH increases, the concentration of bivalent ions decreases, and all species under neutral to mildly acidic conditions exist as monohydroxides. In alkaline conditions the electroactive species do not exist in its ionic form, and the concentration of the monohydroxides are negligible. In the absence of a stabilizing agent, all electroactive species precipitate in alkaline conditions. In the presence of ammonia, the following complex ions are formed

$$\text{Zn}^{2+} + 2 \text{OH}^- \rightarrow \text{Zn(OH)}_2$$
$$\text{Zn(OH)}_2 + 4\text{NH}_3 \rightarrow \text{Zn(NH}_3)_4^{2+} + 2 \text{OH}^-$$
$$\text{Ni}^{2+} + 2 \text{OH}^- \rightarrow \text{Ni(OH)}_2$$
$$\text{Ni(OH)}_2 + 6\text{NH}_3 \rightarrow \text{Ni(NH}_3)_6^{2+} + 2 \text{OH}^-$$
$$\text{Cd}^{2+} + 2 \text{OH}^- \rightarrow \text{Cd(OH)}_2$$
$$\text{Cd(OH)}_2 + 4\text{NH}_3 \rightarrow \text{Cd(NH}_3)_4^{2+} + 2 \text{OH}^-$$

The ammonia is released through the following redox reactions

$$\text{Zn(NH}_3)_4^{2+} + 2e \rightarrow \text{Zn} + 4\text{NH}_3$$
$$\text{Ni(NH}_3)_6^{2+} + 2e \rightarrow \text{Ni} + 6\text{NH}_3$$
$$\text{Cd(NH}_3)_4^{2+} + 2e \rightarrow \text{Cd} + 4\text{NH}_3$$
As shown in Fig. 6, the nickel complex ion is stable up to pH 9.8. However, at pH higher than 9.8, the concentration of this complex starts to decrease drastically. The $[\text{Cd(NH}_3\text{)}_4\text{]}^{2+}$ concentration in the electrolyte shows a very small change as a function of pH when compared to the Ni complex ion concentration. Since the Ni content in the deposit significantly decreases with increasing the pH, the normalized Cd content in the deposit increases. Thus, the results indicate that the Ni content in the deposit strongly depends on pH. One can expect that electrodeposition from electrolytes with pH lower than 9.8 will result in deposits with high Ni and low Cd content.

Effect of stirring.—All deposition processes discussed above were carried out without stirring. Zn and Cd depositions are mass-transfer limited processes, and therefore, stirring has a significant effect on their deposition kinetics. Figure 7 shows the composition analysis for each component with varying the stirring speed. The depositions were performed at $-1.3\, \text{V vs. SCE}$ from a solution containing 1 g/L of CdSO$_4$, 10 g/L of ZnSO$_4$·7H$_2$O, and 40 g/L of NiSO$_4$·6H$_2$O at a pH of 9.3. Increasing the stirring speed increases the content of Cd in the deposit while reducing the Ni content. The results can be explained by taking into account the fact that Cd is mass-transfer controlled. The observed decrease in the Ni content results from a mass-transfer control of the competing proton, Zn and Cd reduction processes. Increasing the stirring speed causes more of these ions to be present near the electrode surface, which increases their deposition rate.

Effect of ZnSO$_4$·7H$_2$O concentration and additives.—Zinc composition in the deposit can be improved by either decreasing the cadmium concentration (thus decreasing the limiting current density of Cd deposition) or by increasing the ZnSO$_4$·7H$_2$O concentration. Figure 8 shows the effect of ZnSO$_4$·7H$_2$O concentration on the deposit compositions. The concentration of NiSO$_4$·6H$_2$O was fixed to be 40 g/L. The deposition was carried out potentiostatically at $-1.3\, \text{V vs. SCE}$ at pH 9.3 without stirring. In the case of 1 g/L of CdSO$_4$, increasing the ZnSO$_4$·7H$_2$O in the electrolyte results in a
decrease of Cd content in the deposit up to 17% with a small change in the Ni content. However, when the CdSO₄ concentration in the bath is higher than 1 g/L, an increase in the concentration of ZnSO₄·7H₂O does not result in any significant effects on the deposit composition. The results indicated that the CdSO₄ concentration in the electrolyte controls the deposit composition. The CdSO₄ concentration in the electrolyte should be maintained below 1 g/L in order to obtain deposits with high Zn and Ni contents.

Figure 9 shows the effect of ZnSO₄·7H₂O concentration on the deposition current density as a function of deposition time. The electrolysis time was kept a constant at 1 h. The deposition current density follows a unique pattern in which the current density is stable for some portion of the experiment and increases steeply after that. With increasing the concentration of ZnSO₄·7H₂O in the bath, the stable portion plateau increases. Such changes in current density modify the morphology and composition of the deposits. SEM and EDX analyses were carried out to study the changes in morphology and composition of the deposits due to the changes in current density. Figure 10 shows the surface morphology of the deposits taken at three points indicated in Fig. 9: one on the stable plateau, one when the sudden change in current density happens, and one at the end of the experiment when the second change in current density occurs. The SEM image showed uniform grain particle deposited at the first plateau area, and it has a composition ratio of 47/28/25 for Zn/Ni/Cd, respectively. When the current density starts to increase at point 2, dendrite growth was detected on the top of the grain deposition. EDX analysis of the dendrite cluster showed a composition ratio of 4/19/77 which has a higher Cd content compared to the background deposition. After reaching steady-current density

Figure 5. Effect of pH on the partial current density of Ni and Cd as a function of the applied potential.

Figure 6. Solution equilibrium concentration in Zn-Ni-Cd plating bath as a function of pH.

Figure 7. Dependence of the stirring speed on the alloy composition of Zn, Ni, and Cd obtained from the solution of CdSO₄, 1 g/L; ZnSO₄·7H₂O, 10 g/L; NiSO₄·6H₂O, 40 g/L at pH 9.3.
again, the SEM showed the increase in size of the dendrite clusters. Because a dendrite cluster has a higher Cd content, the average composition ratio was changed to 17/25/58 \(\text{Zn/Ni/Cd}!\), which indicates that deposition of Cd proceeded strongly with time during dendrite formation. Besides increasing the Cd content enormously, the dendrites have poor adhesion and are easily removed from the surface with washing. This imposes a limit on the thickness of the adherent film. Increasing the concentration of \(\text{ZnSO}_4\cdot7\text{H}_2\text{O}\) extends the duration of the first current density plateau, thereby giving rise to thicker layers of uniform deposit. However, increasing the concentration of \(\text{ZnSO}_4\cdot7\text{H}_2\text{O}\) also alters the deposit composition and thereby the deposit properties. Next organic additives were used to improve the deposit adherence on the substrate and to prevent the dendrite formation. Out of several additives tested, when 0.4 g/L of dextrin and 30 g/L of sodium citrate were added to the deposit bath, a constant current density was observed over the entire deposition time. The deposits obtained were homogeneous and have good adhesion. Figure 11 shows a SEM image of the deposit prepared in the presence of the additive. The deposits are dense with a well-organized structure compared to the deposits prepared in the absence of additives in the electrolyte. The EDX analysis showed a composition of 50/28/22 for Zn/Ni/Cd. The additives also increase the overpotential of hydrogen evolution reaction, resulting in an increase of the current efficiency from 59 to 96%.

Conclusions

Electrodeposition of the Zn-Ni-Cd from complex ion bath was studied as a function of pH, concentrations of the electroactive species in the electrolyte, and stirring. Cd deposition was found to be mass-transfer controlled and dominates the entire alloy deposition process. The concentrations of all electroactive species in the bath were determined by using material balances of the elements, equilibrium conditions, and the electroneutrality conditions at a specified pH. Under neutral to mildly alkaline conditions, the concentration of bivalent cations decreases and all species exist as monohydroxides. In alkaline conditions none of the species exists in its ionic form and the concentration of the monohydroxides are negligible. Nickel and zinc precipitate in alkaline conditions without stabilizing agents. In this study, to maintain the stability of the bath sodium citrate and ammonium hydroxide were used as complexing agents. In this study, to maintain the stability of the bath sodium citrate and ammonium hydroxide were used as complexing agents. The Ni content in the deposit significantly decreases with increasing the pH, while the Cd content in the deposit increases. The deposits plated at a pH lower than 9.8 exhibit high Ni and low Cd content. Increasing the stirring speed increases the content of Cd in deposit while reducing the Ni content. The observed decrease in the Ni content resulted from a mass-transfer control of the competing proton, Zn and Cd reduction processes. At concentrations of CdSO_4 higher than 1 g/L in the bath, the limiting current density of cadmium increases leading to a deposition of large amounts of Cd in the deposit. Increasing the \(\text{ZnSO}_4\cdot7\text{H}_2\text{O}\) concentration in the bath led to an increase in the Zn content in the deposit by mainly replacing the Cd content.
Acknowledgments

Financial Support by Dr. Vinod Agarvala, the Office of Naval Research under grant no. N00014-00-1-0053 and AESF Research Contract, Project 107, are gratefully acknowledged. This work was also partially supported by Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000.

The University of South Carolina assisted in meeting the publication costs of this article.

Appendix

The electrodeposition bath consists of 1 g/L of CdSO$_4$, 10 g/L of ZnSO$_4$·7H$_2$O, 40 g/L of NiSO$_4$·6H$_2$O, and 0.9 M of NH$_3$. The variables to be determined are as follows: [Zn$^{2+}$], [Ni$^{2+}$], [Cd$^{2+}$], [Zn(OH)$^+$], [Ni(OH)$^+$], [Cd(OH)$^+$], [Zn(OH)$_2$], [Ni(OH)$_2$], [Cd(OH)$_2$], [Zn(NH$_3$)$_4$$_2$], [Ni(NH$_3$)$_6$$_2$], [Cd(NH$_3$)$_4$$_2$], [Zn$_2(OH)_3$]$^+$], [OH$^-$], [SO$_4^{2-}$], and [HSO$_4^{2-}$]. The concentration of [H$^+$] depends on the specified pH. The equations used to determine the concentrations are

1. Material balance on zinc

\[
[ZnSO_4]_{ad} = [Zn^{2+}] + [Zn(OH)^+] + 2[Zn_2(OH)_3]^+ + [Zn(OH)_2] + [Zn(NH_3)_4^2] + [OH^-] + [SO_4^{2-}] + [HSO_4^{2-}]
\]

Figure 10. Surface morphology and composition analysis corresponding to three distinct points depicted in Fig. 9.
ing additives, 0.4 g/L of dextrin and 30 g/L of sodium citrate

\[\text{Figure 11. SEM image of Zn-Ni-Cd deposit obtained from the bath containing additives, 0.4 g/L of dextrin and 30 g/L of sodium citrate.} \]

2. Material balance on nickel

\[[\text{NiSO}_4]_{\text{ad}} = [\text{Ni}^{2+}] + [\text{Ni(OH)}^{+}] + [\text{Ni(OH)}_2] + [\text{Ni(NH}_2)_2^{+}] \]

3. Material balance on cadmium

\[[\text{CdSO}_4]_{\text{ad}} = [\text{Cd}^{2+}] + [\text{Cd(OH)}^{+}] + [\text{Cd(OH)}_2] + [\text{Cd(NH}_2)_2^{+}] \]

4. The electroneutrality

\[\begin{align*}
[H^+] + 2[Zn^{2+}] + 2[Ni^{2+}] + 2[Cd^{2+}] + [Zn(OH)^+] + [Ni(OH)^+] \\
+ [Cd(OH)^+] + 3[Zn_2(OH)_3^{2+}] + 2[Zn(NH)_2^{2+}] + 2[Ni(NH)_2^{2+}] \\
+ 2[Cd(NH)_2^{2+}] &= [\text{HSO}_4^-] + 2[\text{SO}_4^{2-}] + [\text{OH}^-] \\
\end{align*} \]

5. The equilibrium conditions

\[[\text{H}^+] [\text{SO}_4^{2-}] - k_1 [\text{HSO}_4^-] = 0 \]

\[[\text{Zn}^{2+}] [\text{OH}^-] - k_2 [\text{Zn(OH)}^+] = 0 \]

\[[\text{Ni}^{2+}] [\text{OH}^-] - k_3 [\text{Ni(OH)}^+] = 0 \]

\[[\text{Cd}^{2+}] [\text{OH}^-] - k_4 [\text{Cd(OH)}^+] = 0 \]

\[[\text{H}^+] [\text{OH}^-] - k_5 = 0 \]

\[[\text{Zn}^{2+}] [\text{OH}^-]^3 - k_6 [\text{Zn}_2(\text{OH})_3^{2+}] = 0 \]

\[[\text{Zn(OH)}^+] [\text{OH}^-] - k_7 = 0 \]

\[[\text{Ni(OH)}_2] [\text{OH}^-] - k_8 = 0 \]

\[[\text{Cd(OH)}_2] [\text{OH}^-] - k_9 = 0 \]

\[[\text{Zn(OH)}_2] [\text{NH}_3]^4_{\text{ad}} - k_{10} [\text{Zn(NH)}_3^{2+}] [\text{OH}^-]^2 = 0 \]

\[[\text{Ni(OH)}_2] [\text{NH}_3]^4_{\text{ad}} - k_{11} [\text{Ni(NH)}_3^{2+}] [\text{OH}^-]^2 = 0 \]

\[[\text{Cd(OH)}_2] [\text{NH}_3]^4_{\text{ad}} - k_{12} [\text{Cd(NH)}_3^{2+}] [\text{OH}^-]^2 = 0 \]

These equations were solved simultaneously by using MAPLE.

References