1-1-2011

Effect of Titanium Dioxide Supports on the Activity of Pt-Ru toward Electrochemical Oxidation of Methanol

Roderick E. Fuentes
University of South Carolina - Columbia

Brenda L. García
University of South Carolina - Columbia

John W. Weidner
University of South Carolina - Columbia, weidner@engr.sc.edu

Follow this and additional works at: http://scholarcommons.sc.edu/eche_facpub

Part of the Chemical Engineering Commons

Publication Info
© The Electrochemical Society, Inc. 2011. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in the Journal of the Electrochemical Society.
http://www.electrochem.org/
Publisher’s link: http://dx.doi.org/10.1149/1.3559495
DOI: 10.1149/1.3559495

This Article is brought to you for free and open access by the Chemical Engineering, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.
TiO₂ and Nb-TiO₂ were investigated as stable supports for Pt-Ru electrocatalysts towards methanol oxidation. X-ray photo-electron spectroscopy (XPS) data for all these TiO₂-based supports show oxidation states of Ti⁴⁺, with no Ti³⁺, suggesting low electronic conductivity. However, the deposition of metal nanoparticles onto the supports at loadings of 60 wt% metal dramatically increased conductivity, making these electrocatalysts (metal particles + support) suitable for electrochemistry even though the supports have low conductivity. For some of these TiO₂-based supports, the activity of Pt-Ru towards methanol oxidation was excellent, even surpassing the activity of the same electrocatalysts supported on carbon. The activity of the electrocatalyst depended on TiO₂ crystalline structure, the addition of Nb into the support and the weight loading of metal. For example, using anatase Nb-TiO₂ as a support increased the electrochemical activity of Pt-Ru by 83% compared to the same electrocatalysts supported on either carbon Vulcan XC-72R or rutile Nb-TiO₂. This electrode was also 64% more active than the one that had anatase TiO₂ as the support with no Nb. Finally, increasing the weight loading of metal from 5 to 60% increased the conductivity by 5 orders of magnitude and the activity by a factor of 20.

Therefore, we synthesized the anatase form of Nb-TiO₂ by modifying a low temperature surfactant-templating method developed by Yan et al. for pure TiO₂. Our high surface area support material (132 m²/g) was fabricated into membrane electrode assemblies (MEAs) and showed activity towards the electrochemical oxidation of methanol in a fuel-cell environment. This is consistent with recent results published by Gojkovic et al. that reported electrochemical activity of Pt and Pt-Ru on anatase Nb-TiO₂. However, it was unclear if a conductive support was produced via a low temperature synthesis route. In this paper, the synthesis method for anatase and rutile Nb-TiO₂ supports were refined based on the method by Cassiers et al. A colloidal procedure to distribute platinum-ruthenium bimetallic nanoparticles onto these supports and commercial forms of pure anatase and rutile TiO₂ was developed from the work of Bock et al. These electrode materials were then fully characterized using X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area, Scanning Microscope Electrode with Energy dispersive X-ray Spectroscopy (SEM-EDX), Atomic Absorption (AA) spectrometry, High Resolution Transmission Electron Microscopy (HRTEM), electronic conductivity tests and O₂–H₂ titration to measure Pt surface area in a chemisorption system. Finally, the activity of the Pt-Ru nanoparticles supported on anatase and rutile forms of both Nb-TiO₂ and pure TiO₂ were measured for methanol oxidation using cyclic voltammetry and compared to the activity of Pt-Ru nanoparticle supported on carbon Vulcan XC-72R.

Experimental

Titanium Oxide Supports.—Niobium addition into titanium dioxide was adapted from the procedure to synthesize TiO₂ of Cassiers et al. The complex NbTi-CtAbBr was synthesized by adding 0.1125 mol of titanium (IV) butoxide (Sigma-Aldrich) and 0.0125 mol of niobium (V) ethoxide (Sigma-Aldrich) to a solution containing hydrochloric acid and ethanol. The relative amounts of Nb:Ti was chosen to produce a material with the stoichiometry 0.1:0.9 (i.e., Nb₀.₁Ti₀.₉O₂). This material will be referred as Nb-TiO₂ throughout the paper. This solution was stirred until the precursors were dissolved. An ethanolic solution of 0.02 mol of cetyltrimethylammonium bromide (CTABr) (Sigma-Aldrich) was added and the complex was washed in a Petri dish for several days at a temperature of 60°C. A solution of de-ionized (DI) water with ammonium hydroxide (NH₄OH) was prepared with a pH of 9–10. The resulting solid was transferred to the solution of DI water and NH₄OH in continuous stirring and kept for 48 h. During this time the pH was maintained between 9 and 10 using NH₄OH. To obtain the Nb-TiO₂ with...
an anatase crystalline structure, the sample was calcined at 400°C for 2 h. The sample was further calcined at 1000°C for 2 h to convert the structure from anatase to rutile. The resulting anatase or rutile powder was crushed into a fine powder with a pestle and mortar. For comparison, pure TiO₂ with anatase structure and pure TiO₂ with rutile structure were purchased from Sigma-Aldrich.

Deposition of 1:1 Pt:Ru Bimetallic Nanoparticles onto Supports.—Platinum-ruthenium nanoparticles were deposited onto the supports using an ethylene-glycol procedure published by Bock et al. A solution of 0.2 M sodium hydroxide in ethylene glycol (150 mL) was added to a round bottom flask, and 400 mg of the support (Nb-TiO₂, TiO₂ or carbon Vulcan XC-72R) was added. The sample was sonicated to disperse the particles in solution. Under a nitrogen environment, 2.03 mmol of ruthenium (III) chloride (Sigma-Aldrich) and 2.03 mmol of platinum (IV) chloride (Sigma-Aldrich) were added to the mixture, allowed to mix for 2 h, and subsequently heated to 160°C for 3 h. The sample was mixed with approximately 1000 mL of DI water and nitric acid was added until the pH reached 1.0. The colloidal suspension was mixed for 3 h. After allowing the solution to settle for 5 h, the sample was filtered and washed with several aliquots of water. The sample was dried at 110°C for 4 h under vacuum conditions. The resulting material was crushed with a pestle and mortar to obtain a fine powder.

Materials Characterization.—XRD was performed on a Rigaku 405S5 to examine the crystal structure of the oxide support materials. XRD patterns were compared with reference spectra using the software JADE (Materials Data, Inc.). XPS studies were obtained using Kratos Hsi monochromatized XPS with ultraviolet photoelectron spectroscopy (UPS) source. Elemental Analysis in a Scanning Microscope Electrode with Energy dispersive X-ray Spectroscopy (SEM-EDX) in a Quanta 200 FEI confirmed a 1:1 ratio of Pt to Ru. Weight percentages of the samples were confirmed by analyzing a solution of catalyst dissolved via acid digestion using PerkinElmer Atomic Absortion (AA) spectrometers. HRTEM images were obtained on a JEOL 2100 F TEM with accelerating voltage of 80–200 kV. BET surface areas measurements were recorded using a Nova 2000 high speed gas adsorption analyzer. The experiments were replicated with a new sample from the same batch of material and the average of the two runs is reported here. The adsorbate used was nitrogen gas.

Electronic conductivity was measured on pressed pellets using a 13 mm diameter die set from International Crystal Laboratories. For making the pellets, 0.6 g of material were added inside the die. The assembly was pressed to approximately 2 metric tons using a Carver...
hydraulic press. Gold wires were attached at opposite sides of the pellet with silver conductive epoxy (Ted Pella, Inc.). The test was performed connecting the pellet using a two point measurement in a Princeton Applied Research VMP3 potentiostat. Electrochemical impedance ran from a frequency of 200 W to 10 kW using EC-Lab software.

The surface areas of platinum for the bimetallic Pt-Ru nanoparticles were obtained using hydrogen titration of adsorbed oxygen in a chemisorption setup (AutoChem II 2920 from Micromeritics) using a procedure described previously. This procedure takes advantage of the fact that adsorbed oxygen can be titrated from Pt at low temperatures (<100°C), while significantly higher temperatures are required for Ru. The average surface areas and standard deviations are reported here based on 3–4 replicated measurements. The platinum dispersion was obtained from the software of the chemisorption and is defined as the fraction of platinum atoms on the surface of the nanoparticles.

The cyclic voltametry experiments consisted of a 5 mm diameter glassy carbon disc working electrode, a luggin capillary Hg/HgSO₄ reference electrode and a Pt wire as the counter electrode. The CorrWare software was used to record the data. The experiments were run at room temperature in a scan window of −0.02 to 1.28 V versus SHE with a cyclic sweep rate of 50 mV/s for 35 cycles, and then three cycles were recorded at 5 mV/s. A solution of 0.5 M H₂SO₄ and 1 M methanol was used as the electrolyte. The ink used for the electrode film consisted of 6 mg of the electrode material sonicated with 3 mL of DI water and 3 mL of isopropyl alcohol (IPA). A volume of 18.5 µL was placed on the electrode. The sample was binded with 75 mg of carbon black. The Pt-Ru nanoparticle area was 300 m²/g. The mass loadings were determined using the following equation:

\[
\text{mass loading} = \frac{\text{infrared mass} - \text{mass of carbon black}}{\text{area of Pt-Ru nanoparticles}}
\]

Table I. Surface areas of the Nb-TiO₂ materials synthesized here as well as commercial TiO₂ and carbon Vulcan XC-72R materials.

<table>
<thead>
<tr>
<th>Sample</th>
<th>BET Surface Area (m²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb-TiO₂ anatase</td>
<td>194</td>
</tr>
<tr>
<td>Nb-TiO₂ rutile</td>
<td>5</td>
</tr>
<tr>
<td>TiO₂ anatase</td>
<td>170</td>
</tr>
<tr>
<td>TiO₂ rutile</td>
<td>213</td>
</tr>
<tr>
<td>Carbon Vulcan XC-72R</td>
<td>232</td>
</tr>
</tbody>
</table>

Figure 5. (Color online) HRTEM images and histograms of 60 wt% Pt-Ru on: (a) anatase Nb-TiO₂; (b) anatase TiO₂; and (c) rutile TiO₂.
with a solution of 5 wt% nafion:IPA (1:20 ratio). All the voltammograms presented here are the third and final scan normalized by the surface area of platinum on the electrode.

Results and Discussion

The crystalline structure for the anatase and rutile forms of Nb-TiO$_2$ was verified using XRD, and they are presented in Figs. 1 and 2, respectively. In Fig. 1, the peaks match the structure for anatase TiO$_2$ structure. No other crystalline phases were detected in the sample, including distinct niobium oxides structures. Since Nb and Ti atom have similar atomic radius and only 10 mol % of Nb is added, a possible explanation is that niobium substitutionally replaces some Ti sites in the lattice of TiO$_2$ structure. For the synthesis of pure TiO$_2$ by Cassiers et al., the crystal phases obtained were a mixture of anatase and rutile. This suggests that the addition of niobium into the synthesis procedure may help to preserve the anatase structure. The anatase form of Nb-TiO$_2$ was heated to 1000°C to obtain the rutile structure. Figure 2 confirms the conversion since the peaks match the structure for rutile TiO$_2$. Additionally, the spectrum reveals small peaks (identified with a circle) representing titanium niobium oxide (TiNb$_2$O$_7$) that are usually seen in samples treated at high temperatures.

XPS was used to obtain the oxidation states and the valence-band spectra at the conduction band of our materials. The spectra for anatase Nb-TiO$_2$ is presented in Figs. 3 and 4. The spectra were scaled using the O 1s peak (not presented) to account for the shifts in the pattern. In Fig. 3, the spectrum shows a doublet peak of Nb 3d$_{3/2}$ centered at 207.7 eV and Nb 3d$_{5/2}$ centered at 210.4 eV. This corresponds to the molecule Nb$_2$O$_5$, which has an oxidation state of Nb$^{5+}$. Figure 4 shows the Ti 2p peaks. The high intensity peak is Ti 2p$_{3/2}$ with a binding energy of 459.3 eV. This has been assigned to TiO$_2$ with an oxidation state of 4+. In the literature, it is found that Nb$^{5+}$ inserted into titanium dioxide will either create one vacancy of Ti atom per four Nb atoms introduced or reduce an atom of Ti$^{4+}$ to Ti$^{3+}$ per Nb atom introduced. The latter would impart conductivity to the material. However, no characteristic Ti$^{3+}$ was observed, as there is not a peak close to the high intensity peak of Ti 2p with less binding energy. A non-conductive oxide material is also consistent with the white color of the samples. Therefore, it is believed that the insertion of Nb$^{5+}$ species created vacancies of Ti atoms to compensate for the excess in charge, instead of a reducing the oxidation state from Ti$^{4+}$ to Ti$^{3+}$. For Nb-TiO$_2$ in its rutile form, XPS spectra were also acquired and similar spectra presented for Nb-TiO$_2$ in its anatase form were obtained. XRD and XPS spectra were also collected for the commercial TiO$_2$ rutile and TiO$_2$ anatase powders and similar results to those shown in Figs. 1–4 were obtained.

BET surface area measurements were performed to obtain the surface area of the supports (Table 1). For anatase Nb-TiO$_2$, the surface area measured was 194 m2/g. This surface area is about 16% lower than the 232 m2/g value for carbon Vulcan XC-72R, the typical support of commercial fuel cells catalysts, and 62% lower than the 613 m2/g value for pure TiO$_2$ reported by Cassiers et al. For the rutile form, prepared by heat treating the Nb-TiO$_2$ to 1000°C, the surface area was reduced to 5 m2/g. Anatase and rutile TiO$_2$ surface areas were also measured by the BET method and the results are presented in Table 1. The surface area for anatase Nb-TiO$_2$ (194 m2/g) is 14% higher than anatase TiO$_2$ (170 m2/g). The commercial rutile TiO$_2$ had the highest surface area of all the TiO$_2$-based materials at 213 m2/g. The BET surface areas of the replicas had less than 8% of difference.

Platinum-ruthenium bimetallic nanoparticles were supported on the materials mentioned above and the resulting particle size distributions for these particles were obtained from HRTEM images. An example of the images obtained for Pt-Ru electrocatalyst supported on different materials are shown in Fig. 5. In the images, the bright regions are the metal nanoparticles of platinum-ruthenium, and the gray areas are: (a) anatase Nb-TiO$_2$; (b) anatase TiO$_2$ and (c) rutile TiO$_2$. Generally, at this high loading, the particles seem well dispersed on all three supports. Average particle sizes were determined using a volume distribution and a histogram is presented in Fig. 5 next to HRTEM images. Around 100 particles were analyzed for each material and the average size determined for 60 wt% Pt-Ru on: (a) anatase Nb-TiO$_2$ was 1.37 nm ± 0.29; (b) anatase TiO$_2$ was 1.36 ± 0.29; and (c) rutile TiO$_2$ was 1.77 ± 0.34. In Fig. 6, HRTEM images of the anatase and rutile TiO$_2$ supports are shown (i.e., not catalyst particles). It is observed that anatase TiO$_2$ particles are round in shape with a diameter in the 10 to 20 nm range. The particles on rutile TiO$_2$ have an elongated elliptical shape with higher diameters than anatase TiO$_2$. The average particle size of 60% Pt-Ru/ TiO$_2$ rutile is increased by 30% compared to the average particle sizes of the other two materials from Fig. 5. As seen on the HRTEM image for this catalyst (Fig. 5), the metal particles tend to agglomerate more in specific areas, leaving void space on the support.

Based on the XPS data, the support is not electronically conductive. However, previous data has shown that methanol oxidation can occur on MEAs made from Pt-Ru electrocatalysts supported on Nb-TiO$_2$. To determine if the metal electrocatalyst could impart sufficiently conductivity to the electrode, the electronic conductivity of the electrode was measured as a function of weight percent platinum loading (see Fig. 7). At low platinum loadings (<10%), the conductivity of the electrode is on the order of 10$^{-8}$ S/cm. Increasing the weight percent of the metal increases the conductivity by orders of magnitude. For example, at 60% Pt loading the conductivity of 1.26 S/cm was measured, a 5 orders of magnitude increase over that of the support. Therefore, it appears that increasing the amount of metal on the support increases the electronic conductivity of the electrode.

Figure 6. HRTEM images of: (a) anatase TiO$_2$; and (b) rutile TiO$_2$ supports only.

Figure 7. (Color online) Electronic conductivity of anatase Nb-TiO$_2$ at room temperature as a function of weight percent loading of platinum.
of the electrode (metal particles + support) to levels that can sustain an electrochemical reaction.

Table II gives the average and the standard deviation of the platinum surface area and the average platinum dispersion for each of the electrocatalysts using chemisorption. For 60 wt% Pt-Ru supported on anatase TiO2, rutile TiO2 and carbon Vulcan XC-72R, the platinum surface area and platinum dispersion of the catalytic particles are all approximately 54 m2/g and 22%, respectively, even though there is a slight variation in BET surface areas of the support (see Table I). However, the 60 wt% Pt-Ru on anatase Nb-TiO2 platinum surface area is approximately 36% smaller at 34 m2/g (14% Pt dispersion) despite the comparable BET surface areas of the supports. The Pt surface area for 60 wt% Pt-Ru on rutile Nb-TiO2 is only 14.5 m2/g (5.9% Pt dispersion), which is more than a factor of 2 smaller than that catalyst on anatase Nb-TiO2. This correlates to the low BET surface area, which is 39 times smaller. The surface area of the support does seem to play a role in the utilization of the catalysts deposited on it, but the relationship is not linear. Another factor affecting catalyst utilization is the percent loading of the metal. Lowering the loading of Pt-Ru from 60 to 40 wt% has a negligible effect in the platinum surface area, but further lowering to 5 wt% Pt-Ru increases the Pt surface area from 33.9 to 88.8 m2/g (a 2.6 fold increase) and the Pt dispersion from 13.7 to 35.9%.

To measure the electrocatalytic activity of the various electrode materials, CV experiments for methanol oxidation were performed and the results are presented in Figs. 8–10. The currents in these figures are normalized with respect to the active surface area of platinum on the electrode (see Table II). In the CVs, the small currents around 0 V correspond to hydrogen oxidation/reduction. As the potential is increased in the positive direction, a peak at approximately 0.9 V indicates the oxidation of methanol and at a voltage of more than 1.2 V, water electrolysis occurs. Upon reversing the scan, an additional methanol oxidation peak at approximately 0.7 V is observed. The normalized peak current during the forward scan at 0.9 V is defined here as the activity of the electrocatalyst towards methanol oxidation.

Figure 8 shows the cyclic voltammogram for 60 wt% Pt-Ru on anatase Nb-TiO2, rutile Nb-TiO2 and carbon Vulcan XC-72R. It is observed that Pt-Ru on anatase Nb-TiO2 has the highest activity. Comparing Pt-Ru on anatase Nb-TiO2 with that on carbon, the former resulted in 83% higher activity. Depositing Pt-Ru on the rutile form of this support had a negligible increase in activity over Pt-Ru/C. Figure 9 shows a comparison of the activity of Pt-Ru towards methanol oxidation for the two different TiO2 crystal structures obtained commercially (i.e., no Nb). The catalyst deposited on the anatase form of TiO2 gave almost four times higher activity compared to the same catalyst on rutile TiO2, consistent with the trends shown in Fig. 8. Therefore, the anatase form of TiO2 offers a significant enhancement to the activity of the metal catalysts towards methanol oxidation compared to either the rutile form or carbon.

To see if Nb incorporation into the crystal structure of the TiO2 plays a role in the catalytic activity of the electrode, methanol oxidation CVs in Figs. 8 and 9 are compared. It is observed that Pt-Ru supported on anatase or rutile Nb-TiO2 have higher activities than Pt-Ru on anatase or rutile TiO2 (i.e., no Nb). For example, 60 wt% Pt-Ru/Nb-TiO2 anatase has 64% higher activity than similar Pt-Ru loading on anatase TiO2. Comparing the rutile forms, the electrocatalyst made from the support containing Nb has five times higher activity. The additional factor, however, when comparing the two rutile-based electrodes is that BET surface area of rutile TiO2 is 43 times higher than rutile Nb-TiO2. It is possible that the preparation method rather than the existence of Nb may be the reason for the observed activity differences.

To see if overall electrode conductivity correlates with electrochemical activity, a series of methanol oxidation CVs were collected on anatase Nb-TiO2 with different levels of metal loadings (i.e., 60, 40 and 5 wt% Pt-Ru). In Fig. 10, the same volume (and hence the same total mass) of each material was deposited onto the surface of the disk. This resulted in all three electrodes having the same electrode thickness but different amounts of metal catalysts. However, normalizing the currents by the active area adjusts for the difference in metal loading. Increasing the loading from 40 to 60 wt% increased the activity by 160% while the conductivity increased by 3 orders of magnitude (see Fig. 7). Increasing the loading from 5 to 60 wt% increased the activity by a factor of 10 while the conductivity increased by five orders of magnitude. It is not clear why the
Electronic conductivity of the electrode (metal particles and catalysts particles onto the supports) dramatically increased electrode conductivity. This is because the support surface area increases with the addition of metal particles, and the metal particles provide additional electronic conductivity. For example, TiO2 gave a value of 194 m2/g, which is about 16% lower than carbon Vulcan XC-72R, but it did not affect the conductivity of the electrode layer could be two orders of magnitude thicker and the current densities three orders of magnitude higher.

Conclusion

TiO2 and Nb-TiO2 were investigated as stable supports for electrocatalysts. Platinum-ruthenium bimetallic nanoparticles were supported on Nb-TiO2 and commercial TiO2 with different crystalline structures and tested for methanol oxidation. X-ray Photoelectron Spectroscopy (XPS) data for all titanium dioxide supports show the anatase form of TiO2, but it did not affect the conductivity of the electrode. Platinum-ruthenium bimetallic nanoparticles were less than 2 nm and the distribution was better in anatase than in rutile. The addition of niobium during synthesis stabilized the rutile phase of TiO2, but it did not affect the conductivity of the electrode. Platinum-ruthenium nanoparticles were better distributed on all the supports. The average particle sizes were obtained commercially. The pure rutile TiO2 had a surface area of 5 m2/g due to the heat-treatment at 1000°C. Particle size distribution from HRTEM images showed small particle sizes well distributed on all the supports. The average particle sizes were less than 2 nm and the distribution was better in anatase than in rutile.

A series of cyclic voltammograms shows that titanium dioxide crystalline structure, the addition of Nb and weight loading of metal have a significant effect on the activity of the electrodes towards methanol oxidation. For example, using anatase Nb-TiO2 as a support increased the electrochemical activity by a factor of five compared to the same electrocatalyst supported on rutile Nb-TiO2. In addition, this electrode was 83 and 64% more active than the one that had Vulcan XC-72R and anatase TiO2 as the support (i.e., no Nb), respectively. Finally, increasing the weight loading of metal from 5 to 60% increased the conductivity by five orders of magnitude and the activity by a factor of 20. Therefore, as long as the metal loading is high enough, the activity of the electrode towards the methanol oxidation reaction can be improved by using anatase TiO2 as supports for electrocatalyst. Since these materials are inherently stable, electrodes made from them also should be more durable than those made from carbon.

Acknowledgment

This work was supported by the 2008 E.ON International Research Initiative entitled “Application of Nanotechnology in the Energy Business.” The authors also would like to thank Dr. John R. Monnier for his help with the chemisorption measurements.

University of South Carolina assisted in meeting the publication costs of this article.

References