Alteration of the Ping and Pong ORF1 Proteins Allows for Hyperactive Transposition of mPing

Lisette Payero1, Giselle Outten1,2, Courtney Burckhalter1,3 and C. Nathan Hancock1*

1 Department of Biology and Geology, University of South Carolina Aiken
2 Current Affiliation: Faculty of Medical Sciences, The University of the West Indies, Mona, Jamaica
3 Current Affiliation: Savannah River National Laboratory, Savannah River Site, South Carolina

The ORF1 and Transposase (TPase) proteins are essential for mobilizing the PIF/Harbinger transposable elements, including the mPing element from rice. Even though mPing is derived from the larger Ping element, it is mobilized more effectively by the ORF1 and TPase proteins encoded by the Ping element. This study aimed to identify the domains of ORF1 responsible for this difference in activity, and to create an optimized ORF1 construct. Three recombinant ORF1 constructs derived from Ping ORF1 and Pong ORF1 domains were made and tested in a yeast transposition assay. The results of these assays indicated that the Nuclear Localization Signal (NLS) containing region from Pong ORF1 contributed significantly to the increased activity. To further enhance this effect, a strong NLS was added, which resulted in even higher transposition. Testing of this high activity construct (Shuffle1 NLS) in Arabidopsis showed that this increase in activity can also be observed in plants. These results provide additional evidence that access of the ORF1 and TPase proteins to the nucleus is a limiting factor in mPing transposition. The domain swapping results also suggested that the Ping Myb-like binding domain was more effective than its Pong counterpart, and was consistent with the ORF1 C-terminal interacting with TPase. The role of a short repetitive sequence, present in the N-terminal Ping ORF1, but absent from Pong ORF1, was also tested. Removing one or both copies of this sequence, resulted in significantly higher activity than controls. Thus, by removing one or both copies of the Ping ORF1 repetitive sequence and using the Pong Myb domain, a strong NLS, and the Pong C-terminal together with Pong TPase resulted in about 50 times more mPing transposition events. This optimized construct will increase the effectiveness of mPing-based gene discovery tools. The finding that the ORF1 protein can be greatly optimized is consistent with the native proteins being adapted to only produce moderate activity, regulating transposition and preventing excessive host damage.

Introduction

Transposable elements are mobile segments of DNA that move from one genomic location to another1. Class II transposable elements (DNA transposons) transpose via a “cut and paste” mechanism, in which the transposable element is excised out of its genomic location and inserted into a new one by transposase proteins2-3. These transposase proteins facilitate transposition by binding to the terminal inverted repeats (TIRs) of the transposable element using a DNA binding domain, and cleaving it from its genomic location using a catalytic domain4. Transposable elements constitute a large portion of most genomes, and play a large role in genome evolution due to their ability to induce mutations and alter genome size5. Determining the mechanisms that control transposable element activity provides clues about how these elements interact with their hosts. The activity and abundance of these elements in plants has also allowed for transposable element mutagenesis systems to be developed for a wide variety of crop species including maize, rice, soybean, and Medicago6-10. Understanding the factors that influence transposition activity is important to fully utilize transposable elements in gene discovery research.

Transposable elements are divided into transposon superfamilies based on their transposition and sequence characteristics11. One such superfamily is the PIF/Harbinger family, which is present in the genome of many plant and animal species12. Members of the PIF/Harbinger superfamily encode two proteins, ORF1 and TPase, that are thought to function together to mobilize the transposable element12. The ORF1 protein has a Myb-like domain believed to be essential in DNA binding, while the TPase protein contains a catalytic domain for DNA cleavage12, 13. Experiments in Arabidopsis, human cells, and Saccharomyces cerevisiae show that both of these proteins are required for mobilization of PIF/Harbinger elements13-15. The ORF1 protein is of particular interest to this study because it has been shown to exhibit more sequence divergence than the TPase protein12.

Two naturally active members of the PIF/Harbinger superfamily are the closely related Ping and Pong elements from rice16-18. The miniature inverted repeat transposable element (MITE) mPing is a deletion derivative of the Ping element, and does not encode its own ORF1 and TPase. In order to transpose, mPing utilizes the ORF1 and TPase proteins from either Ping or Pong13, 14, 16, 19, 20. In some rice cultivars, mPing is highly active, reaching over 1000 copies and about 40 new insertions per generation in the Gimbozu line17, 18, 21.

Previous experiments in yeast have shown that the ORF1 and TPase proteins encoded by the Pong element are more effective at mobilizing mPing than their Ping counterparts13. This is surprising given that mPing is derived from the Ping element and suggests that the Ping element proteins are not optimized for transposition. Our goal was to determine the nature of this difference in ability to mobilize mPing, with special focus on the ORF1 proteins, as they show more sequence divergence compared to the TPase proteins [Ping vs. Pong amino acid identity for ORF1 = 66.1%, TPase = 76.7%]22. Analysis of the Ping and Pong ORF1 proteins shows that while the Myb-like domain is highly conserved, only the Pong-encoded ORF1 protein contains predicted bipartite nuclear localization signals (NLSs) after the Myb domain (Figure 1). Despite this, experiments in yeast show that the Ping ORF1 is recruited to the nucleus13. For comparison, the ORF1 (Myb-like) protein from the Harbinger element from zebrafish contains a predicted NLS and it was shown to be localized to the nucleus, bringing its associated TPase (TNp) protein along with it15. Thus, we hypothesized that the Pong ORF1 NLS is stronger than any cryptic NLS present in Ping ORF1, and thus, more efficiently functions to recruit ORF1 and TPase to the nucleus. This hypothesis is consistent with previous studies that showed that mutation of the Nuclear Export Signals encoded by the Ping and
Pong TPases increases transposition activity. We predicted that domain swapped ORF1 constructs with the Pong ORF1 NLS would show increased ability to mobilize mPing compared to those with the corresponding region from Ping ORF1. Sequence analysis also showed that the Ping ORF1 protein has a short repetitive sequence not present in Pong ORF1 (Figure 1). We hypothesized that the extra copy of the repetitive sequence in Ping ORF1 was due to a replication error and may actually disrupt the structure of the protein. Thus, we predicted that removing the extra repeat would increase ORF1’s ability to mobilize mPing.

To test these hypotheses and determine the factors that make Pong ORF1 more effective than Ping ORF1, we created domain swapped constructs from Ping and Pong ORF1 sequences. ORF1 constructs with strong canonical NLSs were also developed and tested in both yeast and Arabidopsis. The role of the Ping ORF1 repetitive sequence on mPing transposition was determined by comparing the transposition rates produced by ORF1 proteins with one, two and zero copies of the sequence. Together these experiments provided information about the transposition mechanism of mPing and allowed for the optimization of the ORF1 protein to more effectively mobilize mPing.

Materials and Methods

ORF1 domain swapping and addition of a strong NLS

A Ping ORF1 fragment 3-4 NLS fragment (302bp) that contained 15 base changes, resulting in a stronger NLS was synthesized as a gBlocks® Gene Fragment (Integrated DNA Technologies, Coralville, Iowa) [Supplemental Figure 1A]. Domain swapped mutants were created utilizing USER friendly DNA recombination as described 23. DNA fragments with complementary overlapping ends were created by performing PfuTurbo Cx Hotstart PCR (Agilent Technologies, Santa Clara, CA) with Ping ORF1, Pong ORF1, or the Ping ORF1 fragment 3-4 NLS template and the appropriate uracil containing primers (Table 1). The USER enzyme (New England Biolabs, Ipswich, MA) was used to excise the uracil residue from the PCR product, creating complementary overhangs that were joined by ligation. The resulting product was amplified using high fidelity PCR and the full length ORF1 sequence was selected using gel purification. A Gateway® pDONR ZEO entry clone was created by performing a BP Clonase® II reaction. An LR Clonase® II reaction (Invitrogen, Waltham, MA) was then performed using pAG413GAL-ccdB (Susan Lindquist, Addgene #14141) to create an expression clone 24.

Figure 1. Amino acid sequence alignment of Ping ORF1 and Pong ORF1. CLUSTAL W 32 multiple sequence alignment with fully conserved residues shown in blue (*), conserved strong groups in green (+), and conserved weak groups in purple (·). Selected domains found with MyHits 33 are highlighted: Myb-like domain = pink, NLS = yellow, PFTA-like domain = cyan. Boxes indicate regions where the sequence was divided into sections to create recombinant versions. The repetitive region from Ping ORF1 is underlined.
Abdipods Transposition Assay

The Ribosomal Protein S5a (Rps5a) promoter 25 was cleaved out of dpGreen Rps5a-tiTomato (gift from Dr. Wolfgang Lukowitz, University of Georgia) by digestion with the Clal and EcoRV and cloned into Xhol and SstI digested pEarleyGate 100 26 after T4 polymerase blunting to create pEG100R. The Ping ORF1 or Shuffle1 NLS ORF1 construct was inserted into pEG100R with an LR Clonase©II (Invitrogen, Waltham, MA) reaction. The Ribosomal Protein S5a (Rps5a) promoter 25 was cleaved out of pEG100R to produce the pWMD constructs. These products were then cloned into pDONR Zeo using a BP repeat (allowing for priming at multiple positions). The PCR products were then cloned into pDONR Zeo using a BP Clonase©II (Invitrogen, Waltham, MA) reaction. Colonies were sequenced to identify a clone with the desired one repeat variation and no other mutations and denoted as ORF1SC1 ONE. An LR Clonase©II (Invitrogen, Waltham, MA) reaction was performed to move ORF1SC1 ONE into pAG413GAL-ccdB. The ORF1SC1 no repeat (ORF1SC1 NO) construct was created by digesting Shuffle1 NLS with BamHI to remove the repetitive sequences, then ligating the DNA back together.

Yeast Transposition Assay

Novel and previously described pAG415 Ping TPase L384A, L386A, pAG415 Ping TPase L418A, L420A, pAG413 Ping ORF1, pAG413 Ping ORF1\textsuperscript{13] constructs were transformed into CB101 yeast 28 and a 100μl was plated onto both YPD (104 dilution) and galactose CSM-His-Leu-Ura-Ade. The YPD plates were used to determine the total number of yeast cells plated, while the Galactose plates allowed for selection of cells in which mPing had transposed out of the ade2 gene. The YPD plates were incubated for two days, while the galactose plates were incubated for ten. The number of colonies were recorded and used to calculate transposition frequency.

Results and Discussion

ORF1 domain swapping

To determine which regions of the Ping and Ping ORF1 proteins are contributing to the difference in transposition, three domain swapped constructs (Figure 2) were created using the USER friendly recombination method 23. The first construct, Shuffle1, is the Ping ORF1 sequence except the C-terminal domain has been replaced with the Ping sequence. The second, Shuffle2, roughly contained the N-terminal half of Ping ORF1 and the C-terminal half of Ping ORF1, including the Ping NLS sequence. The third, Shuffle3, consisted of the Ping N-terminal domain, Ping Myb-like domain, Ping NLS region, and the Ping C-terminal. These constructs were tested for their ability to induce transposition with the Ping and Ping TPases [lacking the nuclear export signal, L384A, L386A and L418A, L420A respectively 13] (Figure 2). All three recombinant constructs exhibited significantly higher levels of mPing transposition than the Ping ORF1 protein. Shuffle2 with Ping TPase mobilized mPing at significantly higher rates than all other combinations.

The increased activity shown for Shuffle1 compared to Ping ORF1 suggests that the Ping ORF1 C-terminal facilitates transposition better than the Ping ORF1 C-terminal. We also noted that this construct had higher transposition with the Ping TPase than the Ping TPase, consistent with the previous results that indicate that the C-terminal is responsible for dimerization between ORF1 and TPase 15.

The shuffle constructs containing the Ping NLS (Shuffle2 and Shuffle3) show even higher transposition than the Shuffle1 construct, supporting the hypothesis that the stronger Ping ORF1

| Table 1. Primers used for USER friendly DNA recombination |
|----------------|----------------|----------------|----------------|
| Fragment Amplified | Forward Primer | Reverse Primer | Sequence |
| Ping ORF1 Frag 1 | Ping ORF1 ATT B F | Ping ORF1 ATT B R | GGGGACAAGCTTGTACAAAAA GACAGCGCCGTCGAAAGTCATGCAAGG CTCCGGCCTCATGGATCCGAC TCGGGTTCGCGTCTCCGGCCT |
| Ping ORF1 Frag 2 | Ping O1F2 For | Ping O1F2 Rev | AAAAAAGAAGGTCCACGAA GACC |
| Ping ORF1 Frag 3-4 | Ping O1F3 For | Ping O1F4 Rev | ACTCAAUGACGAGCTAAC |
| Ping ORF1 Frag 5 | Ping O1F5 For | Ping ORF1 ATT B R | GGGGACAAGCTTGTACAAAAA GACAGCGCCGTCGAAAGTCATGCAAGG CTCCGGCCTCATGGATCCGAC TCGGGTTCGCGTCTCCGGCCT |
| Ping ORF1 Frag 1 | Ping ORF1 ATT B F | Ping ORF1 ATT B R | GGGGACAAGCTTGTACAAAAA GACAGCGCCGTCGAAAGTCATGCAAGG CTCCGGCCTCATGGATCCGAC TCGGGTTCGCGTCTCCGGCCT |
| Ping ORF1 Frag 2 | Ping O1F2 For | Ping O1F2 Rev | AAAAAAGAAGGTCCACGAA GACC |
| Ping ORF1 Frag 3-4 | Ping O1F3 For | Ping O1F4 Rev | ACTCAAUGACGAGCTAAC |
| Ping ORF1 Frag 5 | Ping O1F5 For | Ping ORF1 ATT B R | GGGGACAAGCTTGTACAAAAA GACAGCGCCGTCGAAAGTCATGCAAGG CTCCGGCCTCATGGATCCGAC TCGGGTTCGCGTCTCCGGCCT |
NLSs contribute to the difference in performance between the Ping and ORF1 proteins. The fact that the Shuffle2 construct was the most effective, especially with Ping TPase, is consistent with it containing both the Ping NLSs and the Ping C-terminal domain. The fact that its activity was even higher than the Ping ORF1 suggests that the Myb-like domain of Ping ORF1 may have a stronger mPing binding capacity than that of the Ping Myb-like domain.

The decreased activity of the Shuffle3 construct compared to Shuffle2 when utilizing Ping TPase corresponds with our previous hypothesis that the Ping C-terminal domain is not as optimized for transposition. Surprisingly, the Shuffle3 construct exhibited equal performance with either the Ping or Ping TPase, unlike the other constructs. In fact, with Ping TPase the Shuffle3 protein mobilized mPing at slightly higher rates than Shuffle2 with Ping TPase. This higher than expected activity with the Ping TPase is possibly the result of better cooperation between the Ping C-terminal and the Ping TPase protein, but could also be a result of including the Ping N-terminal region. To differentiate between these two possibilities explanations, additional experimentation will be needed.

Addition of Strong NLS
The results of the domain swapping experiment confirmed that the quality of the NLS is largely responsible for ORF1 performance. The overall consensus bipartite sequence that has been identified is made up of two adjacent basic amino acids (R or K) followed by a 10 amino acid spacer and then 3 to 5 basic residues in the next 5 amino acids. The Ping ORF1 NLS sequence only has three basic residues, so only barely fall within these qualifications. Therefore, it was hypothesized that converting the Ping ORF1 encoded sequence into a strong NLS sequence would result in higher transposition activity. To achieve this, seven amino acids were mutated to form two complete bipartite NLS sequences, each with a full complement of basic residues (Supplemental Figure 1B). Addition of this strong NLS sequence resulted in dramatically higher performance of both the Ping ORF1 and Shuffle1 ORF1 proteins (Figure 3). These results support the hypothesis that protein localization is directly correlated to transposition activity. However, addition of a strong NLS signal to the Ping TPase lacking the nuclear export signal (L384A, L386A) did not result in any additional increase in transposition activity (data not shown). Together this suggests that TPase protein is effectively recruited to the nucleus together with ORF1.

To confirm that the addition of the NLS represents a biologically relevant change that would also occur in plants, the Shuffle1 NLS construct was tested in Arabidopsis. Matching constructs with Ping TPase L418A, L420A expressed with the Glycine max ubiquitin 3 promoter and either Ping ORF1 or Shuffle1 NLS expressed from the Ribosomal Protein S5a promoter were made (Figure 4). These constructs were transformed into plants containing the mPing:GFP reporter. In this assay, excision of mPing allows for GFP expression. After selection of transgenic events, T1 plants transformed with the Shuffle1 NLS construct exhibited a significantly higher rate of GFP expression (15/32 = 46.9%) than those transformed with the Ping ORF1 construct (5/32 = 15.6%). This result confirms that despite differences in nuclear envelope behavior during cell division, addition of a strong NLS increases the efficiency of entering the nucleus to gain access to the DNA substrate.

Removal of the Ping ORF1 repeat sequence
After deciding to use the Shuffle1 NLS construct because of its high transposition rate, we tested the role of the Ping ORF1 repetitive sequence found at the N-terminal of this construct (Figure 1). Two additional constructs, the first with one copy of the repeat removed (ORF1SC1 ONE), and the second with both iterations of the repeat sequence removed (ORF1SC1 NO), were made. The results of the yeast transposition assay utilizing these constructs are shown in Figure 5. Both ORF1SC1 ONE and ORF1SC1 NO mobilized mPing at significantly higher rates than the Shuffle1 NLS control, though they did not differ significantly from each other. This result indicates that the repetitive sequence found on the Ping ORF1 protein acts to hinder the protein’s ability to mobilize mPing.
Figure 4. Plasmid for mobilization of mPing in plants. Plasmid map of pWMD generated using Geneious software. The tDNA that inserts into the genome is composed of the region between the left and right borders. Promoters are shown in green, genes of interest are shown as blue arrows, terminators are shown in red, and the selectable marker gene (BAR) is shown in yellow.

Figure 5. mPing transposition activity with zero, one, or two copies of the Ping ORF1 repetitive sequence. Chart comparing the Shuffle1 NLS (control) transposition rate, to version with one (ORF1SC1 ONE) or no (ORF1SC1 NO) copies of the Ping ORF1 repetitive sequence. Each bar represents the average transposition events per million cells for six replicates and the error bars indicate standard error.

Conclusion

This study provides insight into the factors that determine the effectiveness of the ORF1 protein. The results of this study show that the ORF1 protein can be optimized by creating a construct composed of the N-terminal of Ping ORF1 and the C-terminal of Pong ORF1, adding a strong nuclear localization signal, and removing one or both copies of the short repetitive sequence present within Ping ORF1. The resulting constructs, ORF1SC1 ONE and ORF1SC1 NO, mobilize mPing at significantly higher rates than either the wild type Ping or Pong ORF1 proteins. These constructs can be used to increase the transposition efficiency when using mPing as a research tool.

Together these results also provide evidence that the Ping and Pong ORF1 proteins are not optimized for transposition. Ping and Pong ORF1 do not contain the strongest possible NLSs and Ping ORF1’s repetitive sequence inhibits transposition. This suggests that the presence of these underperforming domains may serve as self-regulatory mechanisms, acting to prevent high amounts of transposition that would damage the host genome. The fact that different elements contain different self-regulatory mechanisms may actually provide a partial explanation for the “burst” of transposition observed for some transposons including mPing. Specifically, we hypothesize that the mPing element showed a drastic increase in transposition by overcoming the inherent regulatory mechanisms of the Ping element by reducing its size and using the Pong ORF1 and Pong TPase proteins for mobilization.

Acknowledgements

We would like to thank Ashley Strother for technical assistance with the experiments. We also would like to thank David Gilbert for careful editing of the manuscript. Some of the funding for this work was from was provided by NSF Award # 1127083 - A Genetic Resource for Gene Discovery in Soybean and NSF Award # 1444581 – A Resource for Functional Genomics to Support Soybean Genetics and Breeding.

Notes and References

Supplemental Material

A) [Supplemental Figure 1. Sequence changes resulting in a strong NLS.](image_url)

B) [Ping NLS](image_url)