Thromboxane A_2 and TP receptors: A Trail of Research, Well Traveled

Perry V. Halushka*

Medical University of South Carolina, Charleston, SC 29425

This article was written in response to a request from the editor-in-chief as a result of my receiving the Governor’s Award in Scientific Awareness. My goal is to provide a glimpse into a 40 plus year research career that was predominately focused on the role of thromboxane A_2 and its receptor (TP) in physiologic and pathophysiologic processes in the cardiovascular system. It also enumerates the lessons learned along the way that may lead to a productive research career. Those lessons were: perseverance; think out of the box; challenge the dogma; take risks; failure is not a bad thing; focus; select a good mentor(s); choose your collaborators and colleagues wisely (team science); when you start an experiment-finish it (analyze all the data); and take time for your family.

This review is written in response to a request from the editor-in-chief as a result of my receiving the Governor’s Award for Excellence in Scientific Awareness. The following was adopted from the Keynote Address for the 50th Annual Perry V. Halushka MUSC Research day given on November 12, 2015.

The themes for my address were: lessons learned, team science and translational research. These 3 themes reflect the story of my career in research and contributed to receiving the Governor’s award. The focus of my research has been on the cardiovascular system and the role that thromboxane A_2 plays in both physiologic and pathophysiologic processes.

Metabolism of Arachidonic Acid

In order to appreciate the role of thromboxane A_2 in physiologic and pathophysiologic processes, one needs to have a basic understanding of the formation of thromboxane A_2 from arachidonic acid. Arachidonic acid is an essential fatty acid that cannot be synthesized by the mammalian species (Figure 1). It is acquired from various food sources and is stored in membrane phospholipids and released upon activation of phospholipase A_2. Once released it is rapidly metabolized to the labile endoperoxides, PGG_2 and PGH_2 via the enzyme fatty acid cyclooxygenase. The enzyme is inhibited by aspirin and non-steroidal anti-inflammatory drugs. PGH_2 is rapidly metabolized by thromboxane synthase to thromboxane A_2, which is very labile with a t_{1/2} of ~30 seconds. It is hydrolyzed to the stable but inactive thromboxane B_2. Thromboxane synthase is inhibited by imidazole and other derivatives of imidazole. Thromboxane A_2 stimulates platelets to aggregate and vascular smooth muscle cells to contract. Thus, thromboxane A_2 participates in hemostatic control of bleeding as part of a normal physiologic process. However, for example, in the setting of atherosclerotic cardiovascular disease thromboxane A_2 plays a pathophysiologic role in vascular occlusive phenomena. It is aspirin’s ability to irreversibly inhibit the platelet cyclooxygenase and thus thromboxane A_2 that leads to its beneficial effects in the primary and secondary prevention of heart attacks and strokes.

Endotoxemia, Thromboxane A_2 and TP Receptors

Around 1979, James Cook, PhD and Curtis Wise, PhD brought to my attention their observation that essential fatty acid deficient rats (EFAD) were resistant to the lethal effects of endotoxin. Endotoxin is the outer wall of gram negative bacteria and is released when the bacteria are killed. Endotoxin causes a host reaction which in turn can lead to severe shock and death. This situation is mostly commonly encountered when individuals have overwhelming bacterial infections in their blood stream. As noted above, thromboxane A_2 is a fatty acid derived from the essential fatty acid arachidonic acid (Figure 1).

Our hypothesis was that endotoxin stimulates the formation of thromboxane A_2 and that it contributes to the pathophysiology of endotoxic shock. We postulated that the EFAD rats could not make thromboxane A_2 and therefore were protected from the lethal effects of endotoxin. To test the hypothesis several series of experiments were conducted; 1) measurement of plasma levels of thromboxane B_2 in control and endotoxin treated rats; 2) inhibition of the metabolism of arachidonic acid at the level of the cyclooxygenase using indomethacin; 3) at the level of thromboxane synthase using imidazole and 4) direct antagonism of the thromboxane (TP) receptor using 13-azaprostanoic acid. Endotoxin significantly increased the levels of plasma thromboxane B_2 in the rats challenged with endotoxin compared to the EFAD rats and the imidazole treated rats (Figure 2) (1). Thromboxane B_2 plays a pathophysiologic role in vascular occlusive phenomena. It is aspirin’s ability to irreversibly inhibit the platelet cyclooxygenase and thus thromboxane A_2 that leads to its beneficial effects in the primary and secondary prevention of heart attacks and strokes.
The levels of thromboxane B₂ were significantly (p<0.01) greater in the control rats compared to those treated with indomethacin or imidazole. N=8 to 10/group. Modified from J. Clinical Investigation 65:227, 1981, J. Cook et al.

Table 1. Survival rates after a lethal injection of endotoxin in rats.

<table>
<thead>
<tr>
<th>Group (Dead/Total)</th>
<th>5</th>
<th>12</th>
<th>24</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>14/20</td>
<td>19/20</td>
<td>19/20</td>
<td>19/20</td>
</tr>
<tr>
<td>EFAD (7-8 wk old)</td>
<td>0/12</td>
<td>1/12</td>
<td>7/12</td>
<td>8/12</td>
</tr>
<tr>
<td>EFAD (12-13 wk old)</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
</tr>
<tr>
<td>Indomethacin I.V.</td>
<td>0/8</td>
<td>0/8</td>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>Imidazole I.V.</td>
<td>1/10</td>
<td>2/10</td>
<td>4/10</td>
<td>4/10</td>
</tr>
</tbody>
</table>

thromboxane B₂ compare to those that survived a bout of sepsis or patients in the ICU that did not have a bout of septic shock (3). We also treated a group of septic patients with a thromboxane synthase inhibitor and showed that it was safe and effective in lowering plasma thromboxane B₂ levels (4). The company that made the thromboxane synthase inhibitor decided not to further develop it, so we were not able to conduct a large multicenter clinical trial to test its efficacy as a treatment for septic shock.

The company along with several other companies may have developed a group of septic patients with a thromboxane synthase inhibitor and showed that it was safe and effective in lowering plasma thromboxane B₂ levels (4). The company that made the thromboxane synthase inhibitor decided not to further develop it, so we were not able to conduct a large multicenter clinical trial to test its efficacy as a treatment for septic shock.

The company along with several other companies may have decided to drop the development of thromboxane synthase inhibitors as antiplatelet agents based on the observations made by one of my graduate students (see below).

Lessons learned: Choose your collaborators and colleagues wisely (Team Science) (Dr. Cook and I have shared an ROI for 33 years.) and think out of the box.

Platelet Thromboxane Formation and Platelet Aggregation

Dr. John Colwell, a diabetologist at MUSC, found that diabetic patients’ platelets were more sensitive to aggregating agents compared to the appropriate controls (5). Given the role of thromboxane A₂ in promoting platelet aggregation, we collaborated to determine the formation of thromboxane A₂ by platelets from diabetic and control subjects. We found that diabetic patients’ platelets made significantly more thromboxane A₂ and at a significantly greater rate compared to the control subjects’ platelets (6).

In collaboration with Ron Mayfield, also a diabetologist, we found that improving glucose control in the diabetic patients decreased the formation of thromboxane A₂ by their platelets (7).

In the late 70s there was a reigning hypothesis that platelet thromboxane A₂ synthesis was a major contributor to platelet aggregation and that inhibition of its synthesis would confer significant inhibition of platelet aggregation. Along with a couple of my colleagues, we decided to synthesize a series of thromboxane synthase inhibitors as potential drugs to act as inhibitors of platelet aggregation. 7-IHA was one of those compounds. We asked Linda Grimm a graduate student at the time to test its antiplatelet effects and its ability to inhibit thromboxane A₂ synthesis. Soon after she finished the first experiment assessing arachidonic acid induced platelet aggregation, she came to my office and concluded that 7-IHA did not inhibit thromboxane A₂ synthesis because it did not inhibit arachidonic acid induced platelet aggregation. I asked her if she had measured thromboxane B₂. She said that she had not. So I told her to come back to me once she had measured thromboxane B₂. Much to her amazement, 7-IHA significantly inhibited thromboxane synthesis, yet did not inhibit platelet aggregation. Her results completely disproved the reigning hypothesis. The saga continues because, when we submitted the paper for publication, the review came back with a rejection and my take on the review was that it was pejorative and written by the person who was promulgating the hypothesis. I appealed to the editor and he agreed to have the manuscript reviewed by different reviewers. Within about 2 weeks, the manuscript came back accepted as is (8).

Lessons learned: When you start an experiment, finish it with a complete analysis of the data, challenge the dogma and persevere.

“**When you come to a fork in the road, take it**, Yogi Berra

We had conducted many studies demonstrating a role for thromboxane A₂ in physiologic and pathophysiologic processes and decided that it was time to start to characterize the binding characteristics of thromboxane A₂ (TP) receptors and their signaling mechanisms. However, there were no radioactive ligands available that could be used for characterization of the binding characteristics and regulation of their expression. So along with our chemistry colleagues, we synthesized a compound 13-cisAPO, a derivative of 13-azaprostanoic acid, that could be radiolabelled with ¹²⁵I using a simple one-step process. With the compound in hand, we took a 1 year sabbatical in London, England to work with Dr. John MacDermot, to begin to characterize the binding characteristics of the TP receptor using ¹²⁵Iodo-cisAPO. Little did we know that we would run into many challenges, the most critical one was that ¹²⁵Iodo-cisAPO had a very low affinity for the receptor, making it very difficult to get specific binding to the platelet TP receptor. Nonetheless, with John MacDermot’s guidance, we persevered and were able to ultimately demonstrate specific binding (9) and establish the concept of making ¹²⁵I labeled ligands for the characterization of TP receptors (10-12).

Lessons learned: Think out of the box, Choose your collaborators and colleagues wisely, Failure is not a bad thing, Take risks, Focus and Perseverance.

Characterization of the TP Receptors

With a generous gift of a chemical precursor from the ONO pharmaceutical company, Dale Mais, a postdoctoral fellow, and ultimately assistant professor, synthesized a series of thromboxane receptor antagonists. Using these compounds, we characterized the TP receptor in platelets and blood vessels and demonstrated that they represented two distinct classes of
receptors (13-15). The receptor was cloned by Narumiya et al, and since they could not find a second transcript, they concluded that there was only one class of receptors (16). However, a splice variant was subsequently discovered (17) and we also generated additional data to support the notion that there were two classes of receptors (18, 19).

Lessons learned: Believe in your data based on first principles.

The final vignette deals with the earlier observations that some young male athletes abusing anabolic steroids were suffering strokes and heart attacks in their 20s (20) and that male rat aortas were more sensitive to rabbit aorta contracting substance (21), subsequently shown to be thromboxane A2, and that in laboratory animals, testosterone pretreatment enhanced thrombogenic stimuli (22). We hypothesized that testosterone may increase the expression of TP receptors and in turn is responsible in part for these observations. This hypothesis was tested in cultured vascular smooth cells, HEL cells (model for megakaryocytes), rats and ultimately in normal male volunteers and patients with prostate cancer. Collectively, these studies demonstrated that in both pharmacologic doses as well as endogenous levels, testosterone may regulate the expression of TP receptors (23-26).

Throughout my research career, I have learned many lessons that help to make one more successful. They are enumerated below.

Dr. H’s “TOP 10” lessons for success

- Perseverance
- Think out of the box
- Challenge the dogma
- Take risks
- Failure is not a bad thing
- Focus
- Select a good mentor(s)
- Choose your collaborators and colleagues wisely (team science)
- When you start an experiment-finish it (analyze all the data)
- Take time for your family

Acknowledgements

The research that I have conducted over the 40 plus years would not have been possible without the devotion, hard work and intellectual contribution of my 27 trainees and 17 colleagues. To them, I owe a sincere debt of gratitude. I also want to acknowledge the grant support that I received early in my career from the Pharmaceutical Research and Manufacturers Foundation and the Burroughs Wellcome Scholar Award in Clinical Pharmacology, those grants were instrumental in supporting the early stages of my career. The major portion of my research was funded from the NIH, American Heart Association and pharmaceutical companies.

Notes and References

*Corresponding author E-mail: halushpv@musc.edu

